- CHAPTER 6

Optimal control for state-space
models

This chapter concerns optimal control problems for the state-space
models discussed in Chapters 2 and 3. The state and observation
processes x, and y, are given respectively by the equations

Xp 11 = A(k)x, + Bk, + Clk)w, (6.0.1)
v = H(k)x, + G(k)wy | - (6.0.2)

where w, is a white-noise sequence. We now wish to choose the
control sequence i, so that the system behaves in some desirable way.
We have to settle two questions at the outset, namely what sort of
controls are to be allowed (or, are admissible} and what the control
objective 1s. '

The simplest class of controls is that of open-loop controls which are
just deterministic sequences iy, Uy, .. ., chosen a priori. In this case the
observation equation (6.0.2) is irrelevant since the system dynamics
are entirely determined by the state equation (6.0.1). As we shall see in
Section 6.1, open-loop controls are in some sense adequate for non-
stochastic problems (w, = 0). Generally, however; it is better to use
some form of feedback control.Suchacontrolselectsa value ofu, onthe
basis of measurements or observations of the system. We have
complete observations if the state vector x, can be measured directly,
and, since the future evolution of the system depends only on its
current state and future controls and noise, the natural form of
control is then state feedback: u, = u,(x;). The functions u(), us(),. ..
are sometimes described as a control policy since they constitute a
decision rule: if the state at time k is x, then the control applied will be
u = u;(x). Again, the observations y, are irrelevant in this situation. In
the case of noisy measurements or partial observations, however, x;
cannot be measured directly and only the sequence yo, yy,-.., Vi 18
available. Feedback control now means that u, is determined on the
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basis of the available measurements: u, = w,(y,, ¥,, ..., ;). Inthis case,
since y, is not the state of the system, one generally does better by
allowing dependence on all past observations, not just on the current
observation y,. Finally, we shall assume throughout that the control
values are unconstrained. It would be perhaps more realistic to
restrict the values of the controls by introducing constraints of the
form |u,| < 1. While this causes no theoretical difficulties, it would
make the calculation of explicit control policies substantially more
difficult. :

We now turn to the control objective. In classical control system
design the objectives are qualitative in nature: one specifies certain
stability and transient response characteristics, and any design which
meets the specification will be regarded as satisfactory. The ‘pole
shifting’ controllers considered in Chapter 7 follow this general
philosophy. Here, however, our formulation is in terms of optimal
control. The idea is as follows: the class of admissible controls is
specified precisely and a scalar performance criterion or cost function
C(u) 1s associated with each control. We can then ask which control
achieves the minimum cost; this control is optimal. Once the three
ingredients (system dynamics, admissible controls and cost criterion)
are specified, determination of the optimal control is in principle a
purely mathematical problem involving no ‘engineering judgement’.
Indeed, optimal control theory has often been criticized precisely on
these grounds. It may well be that a control which is theoretically
optimal is subjectively quite unsatisfactory. If it is, this will be because
the system model is inadequate or because the cost criterion fails to
take account of all the relevant features of the problem. On the other
hand, a more realistic model or a criterion which did include all the
relevant features might well lead to an impossibly complicated
optimization problem. As usual, the true situation is a trade-off
between realistic modelling and mathematical tractability, and this is
where the engineering judgement comes in.

In this chapter we shall study linear regulator problems, where the
cost criterion is given by : :

N—-1
Cylu) = EI: Y 1Dx; + Fug ||? + x} QxN]. (6.0.3)
k=0

The number N of stages in the problem is called the time horizon and
we shall consider both the finite-horizon (N < o) and infinite-
horizon (N = oo} cases. Further discussion of the cost function C ()
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will be found in Section 6.1, It implies a general control objective of
- regulating the state x, to 0 while not using too much control energy as
measured by the quantity u} FTFu,. Note that the quantity in square
brackets in (6.0.3) is a random variable and we obtain a scalar cost
function (as required for optimization) by taking its expected value,
which is practical terms means that we are looking for a control policy
which gives the minimum average cost over a long sequence of trials.

The optimization problem represented by equations(6.0.1)}—(6.0.3)1s
known as the LQG problem since it involves a linear system (6.0.1),
(6.0.2), a quadratic cost criterion (6.0.3) and gaussian or normal white-

noise disturbances in the state-space model. (For reasons explained -

below, {w,} is assumed here to be a sequence of independent normal
random variables rather than a ‘wide-sense’ white noise as generally
considered in previous chapters.) It is sufficiently general to be
applicable in a wide variety of cases and the optimal control is

obtained in an easily implemented form. It also has, as we shall see,

close relations with the Kalman filter.
In addition to the standard linear regulator as defined above we
shall study the same problem with discounted costs:

N-1
CHu) = E|: Y. PXIDxy + Fuy |? + pNx}QxNJ
K=1

where p is a number, 0 < p < 1. There are important technical reasons
for introducing the discount factor p, but there is also a financial
aspect to it. Suppose that money can be invested at a constant
interest rate r% per annum and one has to pay bills of £a,, £4a4,...
each year starting at the present time. What capital i1s needed to
finance these bills entirely out of investment income? Since £1 now is
worth £(1 +0.01 ) in k years’ time, the amount required is ) ; a,p*
where p = (1 +0.01 7)™ ! and this is one’s total debt capitalized at its
present value. In particular, a constant debt of £a/year in perpetuity
can be financed with a capital of

£3 ap*=E£af(1 - p)
k=0

An important feature of this result is that while the total amount of

debt is certainly infinite, it nevertheless has a finite capital value.
Similarly, in the control problems, the discount factor enables us to
attach a finite cost (and therefore consider optimization) in cases
where without discounting the cost would be + oo for all control
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policies. Of course it is not realistic to assume that interest rates will
remain constant for all time, and a more subjective interpretation of
C”(u) is simply to say that it attaches small importance to costs which
have to be paid at some time in the distant future.

In the three sections of this chapter we discuss the linear regulator
problem in three stages. First, in Section 6.1 we consider the
deterministic case when w, = 0. Many of the ‘structural features’ of the
LQG problem are aiready present in this case, and the optimal
control turns out to be linear feedback: u, = — M(k)x, for a precom-
putable sequence of matrices M(k). This same control is shown in
Section 6.2 to be optimal also in the stochastic case with complete
observatigns, the effect of the noise being simply to increase the cost.
Finally we consider the ‘full’ LQG problem in Section 6.3 and show
that the optimal control is now — M(k)X,, where £, is the best
estimate of the state given the observations, generated by the Kalman
filter. This results demonstrates the so-called ‘certainty-equivalence’
principle: if the state cannot be observed directly, estimate it and use
the estimate as if it were the true state. We also discuss an idea of
- somewhat wider applicability known as the ‘separation principle’.

6.1 The deterministic linear regulator

6.1.1 Finite time horizon

In this section we consider control of the linear system

X+ 1 = A(k)x; + B(k)u, S 6.1.1)
fork =0,1,..., N withagiveninitial condition x,. We wish to choosea
control sequence u = (Ug, Uy,...,Uy_1) SO as to minimize the cost’

N—1
Iy =Y | D(k)x, + F(ku)|> + xyQxy. (6.1.2)
k=0

K

Here D(k), F(k) are matrices of dimensions p x n, p X m respectively
and Q is a non-negative definite symmetric n x n matrix. It will
be assumed throughout that the m x m matrices F'(k)F(k) are strictly
positive definite, which implies in particular that we must have p = m.

We shall also study various infinite-time problems related to
(6.1.1)—(6.1.2), i.c. consider what happens as N — co.

*We denote the cost by J,, in the deterministic case, reserving Cy for the average cost in
the stochastic problem.
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The cost function J y(u) is somewhat different from that convention-
ally employed in treatments of this subject. The more usual form of
cost function 1s

N-1 ' .
Ty =3 Ok QR)x + uy R(kyuy) + X3 Qxy

where Q(k), R(k} are symmetric non-negative definite matrices (strictly
positive definite in the case of R(k)). This has more intuitive appeal
since the terms involving x, penalize deviation of x; from 0 while
X uy R(k)u, is a measure of control energy. Thus the control problem is
to steer x, to zero as quickly as possible without expending too much
control energy; energy expenditure can be penalized more or less
. heavily by appropriate specification of the matrices R(k). This cost
function is, however, a special case of (6.1.2): take p=n +m and

2k I o 71

where QV2(k), RY/?(k) are any ‘square roots’ of Q(k), R(k), i.e. satisfy
(Q'/2(k))' Q*/*(k) = Q(k) (and similarly for R'/?(k)). Such square roots
always exist for non-negative definite symmetric matrices, as shown

in Appendix D, Proposition D.1.3.
We prefer the cost function (6.1.2) because of its extra generahty,

but more importantly because it connects up naturally with the
formulation of the Kalman filter given in Chapter 3. This will become
apparent below.

The control problem (6.1.1)—(6.1.2) can in principle be regarded as
an unconstrained minimization problem. For a given sequence
u=(ug,uy,...,uy_,) and initial condition x,, the corresponding x,
sequence can be computed from the state equations (6.1.1):

x; = A(0)xy + B(O)uy
x, = A(Dxy + B(1)uy
= A(1)A(0)x, + A(1)B(O)uy + B(1)u,, etc.

substituting in (6.1.2), we obtain Jy(u) explicitly as a function of
he mN-vector u=col{ug,u,,..,uy_;} and one could now use
standard’ hill-climbing techniques to find the vector u* which
minimizes J (). This would, however, be a very unsatisfactory way of
solving the problem. Not only is the dimension mN very large even for
innocuous-looking problems, but also we have thrown away an




&,

252 OPTIMAL CONTROL FOR STATE-SPACE MODELS

essential feature of the problem, namely its dynamic structure, and
therefore calculation of the optimal u* would give us very little insight
into what is really happening in the optimization process.

A solution method which uses in an essential way the dynamic
nature of the problem is R. Bellman’s technique of dynamic pro-
gramming. Introduced by Bellman in the mid-1950s, dynamic
programming lias been the subject of extensive research over the
years and the associated literature 1s now enormous. We propose to
discuss it here only to the extent necessary to solve the problem at
hand. The basic idea 1s, like many good ideas, remarkably simple, and
1s known as Bellman’s principle of optimality. Suppose that u* is an
optimal control for the linear regulator problem (6.1.1)—(6.1.2), that is
to say,

I (*) < J ) ‘
for all other controls u = (ug, u,...,uy_ ). Let x} = xq, x¥,..., x* be
the corresponding state trajectory given by (6.1.1) with u, = uf. Now
fix an integer j, 0 < j < N, and consider the ‘intermediate’ problem of
minimizing

N—1 ,
JN,j(uU)) = kZ‘ | D(k)x, + F(kyu [|> + x§ Qxy
=j

over controls u'” = (u;,u;, 4, ..., uy_ ), subject to the dynamics (6.1.1)
as before with the ‘initial condition’

— ¥
xj—xj.

The intermediate problem is thus to optimize the performance of
the system over the last N — j stages, starting at a point x¥ which
is on the optimal trajectory for the overall optimization problem.
The principle of optimality states that the control u*Y =
(u¥,ufy(,...,u%_,) is optimal for the intermediate problem. Put
another way, if u* is optimal for the overall problem then u*" is
optimal over the last N — j stages starting at x}. The reason for this is
fairly clear: if u*" were not optimal for the intermediate problem then
there would be some sequence &) = (@, &;,,,...,dy_ ) such that

JN,j(ﬁU)) < JN,j(u*(j))-
Now consider the control u° defined as follows:

0 Th k<j
uk= ~ .
i, k= j
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and let x? be the corresponding trajectory. Then xg = xj for k < jand

hence

iz | ,
Jnu®) = kZO ID(k)xE + F(kwt 1 * + Iy Ad)

izl _
< Y. ID(k)xE + Fkyuk |2 + Jy fu*?)
k=0 '

= J\(u*). (6. 1.3)

But this contradicts the supposition that u* is optimal. Thus u*?
must be optimal for the intermediate problem, as claimed.

In the preceding argument, the system started in a fixed but
arbitrary state x,. However, there is nothing special about the

initial time zero: the same argument implies that if {x},uf,k>=j}is

an optimal control-trajectory sequence for the intermediate problem
starting at x; = x (arbitrary) then {x¥,uf,k>j} is optimal for the
further intermediate problem starting at x; = x¥ for any j' between j
and N — 1. |

The principle of optimality is turned into a practical solution
technique as follows. Let V,(x) be the minimum cost for the
intermediate problem starting at x; = x. This is known as the value -
function at time j. Then taking j'=j+ 1, the above argument
indicates that V; ought to satisfy

Vix) = min [ | D()x + F(oll* + Vj. 1 (AG)x + B(jjo)]  (6.1.4)

the minimum being taken over all m-vectors v. Essentially, this comes
from calculations similar to (6.1.3) above. If x; = x and control u; = v
is applied, then: '

(a) The cost paid at time j is || D(j)x + F(j)v|*.
(b) The next state is x;, , = A(j)x + B(j)v.

Thus V;, ,(A(j)x + B(j)v) is the minimal cost for the rest of the
problem if control value v is applied at stage j. So certainly

Vi) < IIDG)x + F(o |2 + Vet (A()x + By (6.1.5),

and this holds for any value of v. On the other hand, if {x},u}} is
optimal over the last N — j stages starting at xF = x, then the principle
of optimality indicates that :

N-1 ‘
Viix¥) = Y. IID(R)x¥ + F(k)ugtl|* + x§" Ox¥

k=1




254 OPTIMAL CONTROL FOR STATE-SPACE MODELS .

where { is either j or j+ 1, and this shows since x¥ = x that
Vi) = 1D + FGfI? + Vi (AG)x + BGg). (6.1.6)

Now (6.1.5) and (6.1.6) together imply that (6.1.4) holds.

Equation (6.1.4) is known as the Bellman equation and is the basic
entity in discrete-time dynamic programming since it enables the
optimal control u* to be determined. Note that at the terminal time N
the value function is

Vi(x) = xT0x, - (6.1.7)

since no further control is possible and one has no choice but to pay
the terminal cost of x"Qx. Applying (6.1.4) with j= N — 1 gives

Vy-1(x) =min[[| DN — D)x + F(N — 1)v|®

+ (AN = Dx + B(N — Do)TQ(A(N — D)x + B(N — 1))]

and hence determines V), _(x). Now using (6.1.4) again we can cal-
culate Vy_,, Vy-3,..., Vy. By definition, Vy(x,) is then the minimal
costfor the overall problemstarting at state x,. From(6.1.5)and (6.1.6),
the optimal control u¥ is just the value of v that achieves the minimum in
(6.1.4) with x = x¥.

Before proceeding any further let us consolidate the discussionso far.
We have used the principle of optimality to obtain the Bellman
equation (6.1.4) and this suggests the procedure outlined above for
obtaining an optimal control. Having arrived at this procedure,
however, we can verify that it is correct by a simple and self-contained
argument; this will be given below. Thus the principle of optimality is
actually only a heuristic device which tells us why we would expect the
Bellman equation to take the form it does; it does not appearin the final
formulation of any results. One could present the theory without
mentioning the principle of optimality at all, but this would involve
pulling the Bellman equation out of the hat, and readers would be left

wondering — at least, we hope they would be left wondering — where it

came from.

Theorem 6.1.1 (Verification theorem)

Suppose Vy_(x), Vy_x(x),..., Vo(x) satisfy the Bellman equation
(6.1.4) with terminal condition (6.1.7). Suppose that the minimum in
(6.1.4) is achieved at v = uf(x), ie.

0 s
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ID()x + F(j)ul (x) |12 + Vi 1(AG)x + B()uj (x))
ZIDG)x + F()wl? + Vi ((AG)x + B()v)
for all m-vectors v. Now define (x}, uf) recursively as follows:
x¥=x, (6.1.8)

Uy = u(xy)

wH=Aw+B@} k=01, ,N=1. (619

Then u* = (uf,...,u}_,)is an optimal control and the minimum cost.
is Vy(xo)-

PROOF Let u=(ug,...,uy_,) be any control and x,,...,xy the
corresponding trajectory, always with the same initial point x,. Then
from (6.1.4) we have

Vi{x) = [ D(G)x; + FU)“j||2 + Vip1(xj41)- N (6.1.10)
Hence
N-1
Vilxy) — Volxo) = kZO Vit 10Xk 1) — Vi)

iHDox+quw (6.1.11)

Since Vy(xy) = xyQxy this shows that
Vo(xo) < J (1), " (6.1.12)

On the other hand, by definition, equality holdsin(6.1.10)and hence in
(6.1.11) when x; = x¥, u; = u}, so that

Vo(xq) = J 5(u*). (6.1.13)
Now (6.1.12),(6.1. 13)say ‘that u* is optimal and that the minimal cost is
Volxo)- ]

Two remarks are in order at this point;
1. Notethat the optimal controlis obtainedin feedback form,i.e. xk
is generated by

X1 = A(k)x + B(k)“t? (x¥)

where u0(-)is a pre-determined function. (See Fig. 6.1(a).) One could in
principle obtain the same cost V(x,) by calculating the uj sequence
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> x*¥ * *
System X7 ys —> System —>x,

{b)

0/ %
vl

(a)
Fig. 6.1 (a) Feedback control; (b) Open loop control.

explicitlyand applyingitin openloop(Fig. 6.1(b)) butsucha procedure
has serious disadvantages. Using the dynamic programming appro-
ach, wehaveinfactnot only solved the original overall control problem
but have solved all the intermediate problems as well: an argument
identical to that given above shows that the control u} generated by
(6.1.9) with any initial condition x¥ = x is optimal for the control
problem over the last N — j stages starting at x; = x. Thus if for some
reason the system gets ‘off course’ the feedback controller continues to
actoptimally for the remainingstages of control. On the other hand, the
values ujf calculated for the open-loop control of Fig. 6.1(b) are based
onaspecificstarting point x, and if thisiserroneous orifanerror occurs
at some intermediate point then the u} sequence will no longer be
optimal.

2. Nothing so far depends on the quadratic nature of the cost
function (6.1.2). Similar results would be obtained for any scalar cost
function of the form

N-1
() = kzo Wi, X ) + glxy). (6.1.14)

Wehaveseen above that the basic step in solving the optimal control
problem is to calculate the value functions Vy_(x),..., V,(x). With
general cost functions J'(u) as in (6.1.14) this involves an immense
- amount of work since the whole function V,(-) has to be calculated and
not just the value V,(x) at some specific point x. The advantage of the
quadratic cost (6.1.2) is that the value functions take a simple
parametric form and can be computed in an efficient way. Indeed, the
value functions are themselves quadratic forms, as the following *
result shows. ’
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Theorem 6.1.2

The solution of the Bellman equation (6.1.4), (6.1.7) for the linear
regular problem (6.1.1), (6.1.2) is given by

Vi(x)=x"S(k)x  k=0,1,....N (6.1.15)

where S(0),...,S(N) are symmetric non-negative definite matrices
defined by (6.1.20) below. The optimal feedback control is
uj(x) = — M(j)x a
where '
M(j)=[B'()SG + DHBG) + FT(HF()]™!
{[B()S( + DA() + FT(HD())]. (6.1.16)
We see that the optimal controller has a very simple structure,
namely linear feedback of the state variables. The notation u} for

optimal control is used for consistency with the discounted cost case
to be discussed below. '

PROOF Note that the result is certainly true at k = N since Vy(x) =
xTQx. To show that it holds for k < N we use backwards induction:
supposing (6.1.15) holds for k =j + 1 we show that it holds for k =j.
Taking V;, (x) = x'S(j + 1)x, the Bellman equation (6.1.4) becomes

Vix) =min [ D(j)x + F(j)l 2+ (xTAY(j) + 0" B(j))

S(j + D(A())x + B(j)v)]. (6.1.17)

The quantity in square brackets on the right-hand side is equal to
v"(B'S(j+ 1)B+ F'F)v + 2x"(AS(j + 1)B+ D"F)v
+ xT(ATS(j + 1)A + DTD)x (6.1.18)
where we temporarily write B(j)= B, etc. Now if R is a symmetric
positive definite matrix and a an m-vector then
(v+a)"R(v+a)=v"Rv+2a"Rv+a"Ra

1.e.

vTRv 4+ 24"Rv=(v + a)"R(v + a)— a"Ra.

Clearly this expression is minimized over v at v= —a and the
minimum value is — a'Ra. In order to identify this with the first two
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terms in (6.1.18) we require
R=B'S(j+1)B+ F'F
Ra=(B'S(j+ )4 + FTD)x.
Now by assumption F'F, and hence R, is strictly positive definite, and
therefore a is specified by :
a=R™YBS(j+ 1)A + F'D)x.
Thus the right-hand side of (6.1.17) is ec
x"[ATS(j + 1)A + D"D — (A'Sy, . 1)B+ D"F)

R™YB'S(j+ WA + F'D)]x. (6.1.19)
Hence Vj(x)=x"S(j)x where S(j) is given by the expression in the
square brackets in (6.1.19) and S(j) >0 by (6.1.17). Thus V(x) is a
quadratic form, as in (6.1.15), for all k=0,1,..., N. Note from the
above analysis (specifically from (6.1.19)) that the matrices S(k) can be

computed recursively backwards in time starting with S(N)=Q. In
fact, writing out (6.1.19) in full we see that the S(k) are generated by

S(N)=0 ’
S(jy = AT()S( + DA + D (HPG) — (AT()HS( + 1)B()
+ DY(HFGN(BT(HS( + VDB(G) + FTHFGH ™
(BT(j)S(j + DAG) + FT()HD())
j=N—-1,N-2,...,0. (6.1.20)
Applying the dynamic programming results, the optimal feedback
control is the value of v that achieves the minimum in (6.1.16), and this
is equal to — a, so that
ul(x)=—[B'(j)SGi + DBG) + FT(HF (NI~
-[BT()S(j + DAG) + FT(HD(j)]x.

This completes the proof. | O

Filtering[control duality .

A very important feature of the above result is its close connection to
- the Kalman filter discussed in Section 3.3. Equation (6.1.20) is a
Riccati equation of exactly the same type as that appearing in the
Kalman filter equations, with the distinction that (6.1.20) evolves
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backwards from a terminal condition at time N whereas the filtering
Riccati equation (3.3.6) for the estimation error covariance P(j)
evolves forward from an initial condition at j = 0. The Kalman gain
K(j) is related to P(j) in exactly the same way that the control gain
M(j) is related to S(j), except for transposition. Specifically, the
correspondence between the two probiems is as shown in Table 6.1.

Table 6.1

Filtering Control | [
(time) j N—j

A(j) AT(j)

H(j) B'(j)

C(j) - DY

G(j) F(j)

P(j) T o *

K(j) M(j)

This means that if we take the filtering Riccati equation (3.3.6), make
the time substitution j —» N — j and relabel 4, H, C, Gas A, B', DT, F'
respectively, then we get precisely (6.1.20). The same relabelling
applied to the expression (3.3.5) for K(j} produces MT(j). Thus the
Riccati equations (6.1.20) and (3.3.6) are the same in all but notation.
This will be very important when we come to consider various
properties of the Riccati equation, since its solution can be regarded
interchangeably as the value function for a control problem or the
error covariance for a filtering problem, and various facts can be
deduced from one or other of these interpretations.

Discounted costs
Let us now specialize to the time-invariant system
Xps,=AX, +Bu, (6.1.21)

(i.c. A(k) = A, B(k) = B for all k) and consider minimizing a discounted
cost of the form

N-1 )
B ="Y PIDxc+ Ful?+p%k0xy  (6.122)
k=0

where D,F,Q are fixed matrices and p is the discount factor
(0 < p < 1). Thisisactually aspecial case of the preceding problem (take
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~ D(k) = p*¥?D, F(k) = p**F and replace Q by p¥Q); but there is another
way of looking at it which provides a little more insight. Write

N—-1
Ji(w= 3 pHIDx,+ Fuyl + "] Oy

N-1
= kZO ||Dpk/2xk + Fpklzukﬂz + pNxI,QxN

N-1
= L IDxf+ Fuf® + x§Toxg (6.1.23)
where we have defined
| xpi=pHx
uf:=p*%uy. | C(6.1.24)

Multiplying (6.1.21) by p%**1/2 gives

p(k+ 1)/2xk+1 — p”zAp"fzxk +p1,'zBpk/2uk -
1e. .
xf = A?x{ + BPuf : (6.1.25)
where A?: = p'/?2 A, B?:= p'/?B. But (6:1.23)—(6.1.25) constitute a time-
invariant linear regulator problem in standard non-discounted form.
The optimal control is therefore

ut = — (B°'S(k + 1)B° + FTF)~{(BPTS?(k + 1)4” + FTD)x?
=: — MP(k)x?
where S”(k) is the solution of (6.1.20) with 4 replaced by p'/?4 and B
replaced by p'?B. In view of (6.1.24) the optimal control wu, is
expressed in terms of the ‘real’ state x, by
" w, = — M?(k)x,.

Thus the discounted cost problem is solved simply by taking the
undiscounted problem and making the substitutions 4—p'/?A4,
B—pl/B.

6.1.2 Infinite-time problems

In this section we will continue to assume that the system and costs

are time-invariant, i.e. the matrices A, B, D, F do not depend on the

time, k. '
In many control problems no specific terminal time N is involved
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and one wishes the system to have good long—run performance. This
suggests replacing (6.1.2) by a cost

J ()= k;ﬂ IDx, + Fu)|%. (6.1.26)

It is not obvious that the problem of minimizing J () subject to
the dynamics (6.1.1) makes sense: it might be the case that J (u) =
+ oo for all controls u. Note, however, that the problem does make
sense as long as there is at least one control u such that J (u) < o0, A
simple sufficient condition for this is that the pair (A, B) be stabilizable,
i.e. there exists an m x n matrix M such that 4 — BM is stable. Taking
for u the feedback control 4, = — Mx,, the system dynamics become

Xg+1 =(A4 — BM)x,.

Now since 4 — BM is stable, it follows from Proposition D.3.1,
Appendix D, that there exist constants ¢ > 0 and ae(0, 1) such that

x, Ml < cat [l x|

Since ||(D— FM)x|| < K|x|} for some constant K, the cost using
control i is '

=Z D — FMkaZ

<K xol12 Y a?*
K=o
=c2K? | xoI?/(1 — a?).

Thus with any stabilizing control, the norm of x, decays sufficiently
fast to give a finite total cost. We will therefore assume henceforth that
the pair (A4, B) 1s stabilizable.

If V(x) is the value function at time k for the infinite-time problem
then it seems likely that ¥, does not actually depend on k, since, there
being no ‘time horizon” and the coefficients being time-invariant, the
problem facing the controller is the same at time k as at time zero,
except for some change in the initial state. Recalling the Bellman
equation (6.1.4), this suggests that the value function V = ¥, should
satisfy

V(x)=min[ | Dx + Fv|? + V(4x + B)]. (6.1.27)
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Note this is no longer a recursion but is an implicit equation which
may or may not be satisfied by a particular function V.

Proposition 6.1.3

Suppose that V is a solution of (6.1.27) such that V is continuous and
V(0) =0, and that u!(x) achieves the minimum on the right, i.e. for all
vectors v,

| Dx + Fu'(x}||? + V(Ax + Bu'(x)) < || Dx + Fv||* + V(Ax + Bv).

Suppose also that u! is a stabilizing control in the sense that || x, ||
—0 as k— oo, where x, is the trajectory corresponding to u’, i.e.

xk+1 = Axk + Bul(xk).

Then u!(x) is optimal in the class of stabilizing controls. Equation
(6.1.27) has the quadratic solution V(x) = x"Sx if and only if § satisfics
the algebraic Riccati equation (6.1.29) below, and in this case the
corresponding control is

ul(x)= — Mx
where
M = (B"SB + F'F)~{(B'SA + FD) (6.1.28)

PROOF Let {x,,u,} be any control/trajectory pair such that || x|
—0as k— oo and write

1

Vixg) = Vixol= T Vxien) = V()

N—1 ’
>'Y |Dxe+Fu?  (from (6.1.27))
o
Thus
N—1
V(xo) < ZO |Dx, + Fugll* + V(xy).
k=

Now by the assumptions on V and x,, V(xy)—0as N — co and hence

=8}

Vixo) < 3 I1Dxi+ Fugll* = J ().

k=0

The same calculations hold with = replacing > when u = u!, and this

TA natural requirement since if x = 0 the control u, = 0 is plainly optimal.
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shows that
V(xg)=J (u!)=minJ _(u).

Thus 1! is optimal in the class of stabilizing controls (those for which-
| x, ]| =0 as k— oo, x; being the corresponding trajectory.)

Since the value function for the finite-horizon problem is a
quadratic form, let us try a solution to (6.1.27) of the form x"Sx where
S is a symmetric non-negative definite matrix. From (6.1.19), the
minimum value on the right of (6.1.27) is then

xT[ATSA + D™D — (A"SB + DF)(B'SB + F'F)"}(B"SA + F'D)Ix

and V(x) = x"Sx is therefore a solution of (6.1.27) if and only if S
satisfies the so-called algebraic Riccati equation (ARE):

S = ATSA + D™D — (ATSB + DTF)(B'SB + F'F)~(BSA + F'D).
(6.1.29)

If S satisfies this then certainly V(x)=x"Sx is continuous and
V(0) = 0. The corresponding minimizing %! is given as before by

ul'(x)= — Mx
where , ‘ ,
M =(B'SB+ F'F)"(B'SA + F'D). O
If the matrix A — BM is stable then [|x,] —0 as k — o0 where
xk+1=Axk+Bu1(xk)=(A_BM)xk. |

The above proof thus shows that if S satisfies (6.1.29) and A — BM 1s
stable then the control u'(x,) = — Mx, is optimal in the class of all
stabilizing controls. An important feature of this result is that the
optimal control is time-invariant (does not depend explicitly on k),
although time varying controls are not in principle excluded.

It is evident from Proposition 6.1.3 that the infinite time problem
hinges on properties of the digebraic Riccati equation. These are
somewhat technical and a full account will be found in Appendix B.
Let us summarize the main results. The conditions required on the
coefficient matrices 4, B, D, F are as follows:

(a) The pair (4, li) is stabilizable. -
- (b} The pair (D, A} is detectable, where (6.1.30)

A=A—-B(F'F)"*F'D C
D=[!—-F(F'F)"'FT]D.
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The first of these conditions is a natural one since, as remarked before,
it ensures the existence of at least one control giving finite cost. The
motivation for condition (b} 1s less obvious, though it does seem clear
that some condition involving D and F, in particular concerning the
relation between states x, and ‘output’ Dx,, 1s required to justify
limiting attention to stabilizing controls. Condition (b) takes the
simpler form ,

(b") (D, A) is detectable,

when F'D = 0; this is the case alluded to at the beginning of this
section, in which the cost takes the form

IDx, + Fu, |2 = xD"Dx, + ul F'Fu,.

Under conditions (6.1.30), the argument given in Appendix B shows
that there is a unique non-negative definite matrix S satisfying the
algebraic Riccati equation, that A — BM is stable, where M is given by
(6.1.28), and that the control u'(x,) = — Mx, is optimal in the sense of
minimizing J,(#) over all control-trajectory pairs (x,, u,) satisfying
the dynamic equation (6.1.1). (The less precise argument summarized
in Proposition 6.1.3 only shows that u!(x)minimizes J (1) overall such
pairs satisfying ||x,|| =0 as k — ac.)

The relation between the finite and infinite-time problems is also
elucidated in Appendix B. In fact it is shown that under conditions (a)
and (b),

S=lim S(— k) (6.1.31)

k— oo
where S(— 1), S(— 2),... is the sequence of matrices produced by the
Riccati equation (6.1.19) with §(0) = Q where Q is an arbitrary non-
negative definite matrix. Now xTS(— k)x is the minimal cost for the k-
stage control problem (6.1.1)—(6.1.2) with terminal cost x Qx,. In view
of (6.1.31) we see that as the time horizon recedes to infinity, the cost of
the finite-horizon problem approaches that of the infinite horizon
probiem, whatever the terminal cost matrix @. Q is unimportant
because | x, || will be very small for large k when the optimal control is
applied.

Generally, in the finite-horizon case, the optimal control u, =
— M(k)x; is time-varying. If, however, one sclects Q =S as the
terminal cost, where S satisfies the algebraic Riccati equation, then
S(k) =S for all k, so that the time-invariant control u, = — Mx, is
optimal, and this is the same control that is optimal for the infinite-
horizon problem. The situation is somewhat analogous to that of a
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transmission line terminated by a matched impedance. With this
termination the line is indistinguishable from one of infinite length. In
the control case, if the terminal cost is xJSx, the controller is
indifferent between paying it and stopping, or continuing optimally
ad infinitum. In either case the total cost is the same, so it is reasonable
to describe § as the ‘matched’ terminal cost matrix.

Finally, let us consider the infinite-time discounted cost problem,
where the cost function is

Jo,w) =3 p*IDx, + Fu|?.
K=0

Proceeding exactly as in the finite-horizon discounted case, we
conclude that the optimal control is |

uf(x,) = — M°x,.
Here
M? =(B’1S*B? + FTF)"Y(B*'$*A? + F'D)

and S” is the solution of the algebraic Riccati equation with A and
replaced by A” and B* respectively, where

AP =pl24,  BP=p!?B,

The conditions for existence of a solution S” to the modified equation
are the appropriately modified version of (6.1.30) above, namely

(c) (A%, BF) is stabilizable.

D, A i i 13
(d) (D, A*) is detectable (47 = p/24). (6.1.32)

Note that if U is any n x n matrix with eigenvalues 44, ..., 4, then the
eigenvalues of p/2U are p'/?4,,..., p %1, since if x; is an eigenvector
corresponding to 4; then

pl"‘z Uxi = p”zl,-x,-. (6.1.33)

Thus A” — B°M = pY*(A— BM) is stable if A— BM is stable.
Similarly 4% — (p'>N)D = p'/*(A — ND) is stable if A — ND is stable.
Thus conditions16.1.30) imply conditions (6.1.32), so that 5” exists for
any p < 1 if conditions (6.1.30) are satisfied. However, taking U = A4
and U = Ain(6.1.33) we see that, for sufficiently small p, 4? and A” are
both stable and, a fortiori, (47, B®) and (D, A*) are stabilizable and
detectable respectively. Thus an optimal solution to the discounted
cost infinite-time problem always exists if the discount factor p
sufficiently small. An optimal control with finite cost can, however, be
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obtained without discounting if the rather mild conditions (6.1.30) are
met. This contrasts with the situation in the stochastic case consi-
dered in the next section, where discounting is always necessary to
obtain finite costs in infinite-time problems.-

This concludes our discussion of the deterministic optimal regu-
lator problem. We need it as a stepping-stone to the stochastic case
and also to isolate the duality relationships which connect the Riccati
equations which arise here and in the Kalman filter. In Appendix B,
the asymptotic behaviour of the Riccati equation is investigated by
methods which rely heavily on its control-theoretic interpretation.
But, thanks to the duality properties, these results apply equally to tell
us something about asymptotic behaviour of the estimation error in
the Kalman filter. '

In recent years, techniques based on the linear/quadratic optimal
regulator have become an important component of muitivariable
control system design methodology. It is outside the scope of this
book to discuss such questions, but some references will be found in
the Notes and References at the end of this chapter. The essential
advantage of the linear/quadratic framework in this connection is
that arbitrary dimensions m and p of input #, and output Dx, are
allowed, whereas techniques which attempt to generalize the classical
single-input, single-output methods are seriously complicated by the
combinatorial fact that there are rp transfer functions to consider, one
from each input to each output. A subsidiary advantage of the
linear/quadratic framework is that time-varying systems are handled
with relative ease.

6.2 The stochastic linear regulator

In this section we consider problems of optimal regulation when the
state equation includes additive noise, as in the state-space stochastic
model discussed in Section 2.4. Thus x, satisfies

Xpoy = Axe + Bl + CRW, (621

where {w,} is a sequence of l-vector random variables with mean 0 and
covariance I. We will assume in this section that w, and w; are
independent (tather than merely uncorrelated) for k #j. The initial
state x, is a random vector independent of w, with mean and
covariance m,, P, respectively. We suppose that the state x, can be
measured directly by the controller, so that controls will be feedback
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unctions of the form u, = u,(x,). The objective is to minimize the cost
criterion ‘

Cyu)=E [Nil ID(k)x, + Fkyuy|1* + x}:QxN]- |
k=0

The value function W{x) at time j for this problem is the minimum
lue of

N—-1 :
E,[ 2 1Dk, + Fkyuy /1> + x QxN]
=1

where E; , denotes the expectation given that the process starts off at
x;=x (a fixed vector in R"). If x; = x and the control value u;=v is
applied then the next state is

X;41 = A(j)x + B(j)v + C(j)w;

and, by definition, the minimal remaining cost for the rest of the
problem from time j + 1 to N is W,, ,(x;, ). This, however, is now a
random variable since x; ., is determined partly by w;. The expected
minimal remaining cost is obtained by averaging this over the
distribution of w;, giving a value of

EW; . ((A(j)x + B(jlv + C(j)w)).

Thus the minimum expected cost starting at x; = x, if control u; = v is
used, is the sum of this and the cost || D(j)x + F(j)v|* paid at time j.
This suggests that W{(x) should satisfy the stochastic Bellman .
equation

Wix)= mvin[ ID(j)x + F(jyvll? + EW,. ((A(j)x + B(j)w + C(jiw))]
(6.2.2)

where again E means averaging over the distribution of w; with x,v
fixed. At the final time N no further control or noise enters the system,
so that

Wy(x) = x"Qx. (62.3)

As before, (6.2.2)-(6.2.3) determine a sequence of functions
Wy, Wy — 1,-.., Wy by backwards recursion. And, also as before, we do
not rely on the above heuristic argument to conclude that these
functions are indeed the value functions for the control problem, but
provide independent direct verification.
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Proposition 6.2.1

Suppose that Wy, ..., W, are given by (6.2.2), (6.2.3) and that u((x) is
the value of v that achieves the minimum in (6.2.2). Then the feedback
control uf = u;(x,) minimizes the cost Cy(u) over the class of all
feedback control policies.

PROOF Let u,(x,) be an arbitrary feedback control and let x, be the
process given by (6.2.1) with u, = u,(x,). Then :

Walea) = Wolto) = 3 (W s34 2) — W)

k=0

so that
' ' N-1
E[Wy(xy) — Wol(xo)] = k;) E[W, s 1(xx+1) — Wilx)]  (6.2.4)

In calculating the expectations on the right we are entitled to
introduce any intermediate conditional expectation. We therefore
write

E[Wy i 1(xg41) — WX )] = E{E[ Wit 1(Xk+ 1) — Wilxy)|x, ] }
(6.2.5)

Now, given x,, W,(x,) is known and x, ., is given by
Xi+1 = AK)X; + Blk)udx,) + C(k)w,.

The first two terms on the right are known and the third is a random
vector independent of x;. The conditional expectation of W, | (x4 4)
is therefore given by :

E[W, (x4 DX ] = EW o, ((AlK)x, + Blku(x,) + C(kywy)

where the expectation on the right is taken over the distribution of w,
for fixed x,. Now, using (6.2.2) we obtain

E[W,p1(x 1 1) — WilxdIx] = EW iy 1((A(K)x, + Blkuy(x,)
+ Clk)w,) — Wilxy)
> — | D(k)x, + F(kyu(x,) |2 (6.2.6)

Combining (6.2.4)-(6.2.6) shows that

N-1
E[Wy(xy) — Wo(xo)l = — E kZO [ D(k)x, + F(k)u(x) | 2
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and hence, since Wy(xy) = X Qxy, that
EW,(xo) < Calt). 627

On the other hand, the same argument holds with equality instead of
inequality in (6.2.6) when u,(x) = ui(x), so that

EWO(XO) = CN(HI). - (6.2.8)
Now (6.2.7) and (6.2.8) say that u! is optimal. - »

The proof actually shows a little more than is claimed in the
proposition statement. Indeed, since W,(x,) 1s only a function of x,,
the expectation in (6.2.8) only involves the (arbitrary) distribution of
the initial state x,. In particular, if x, takes a fixed value, say x,, with -
probability one, then the corresponding optimal cost is just W,(x,).
Thus Wy(x,) should be interpreted as the conditional optimal cost
given the initial state x,. The overall optimal cost is then obtained by
averaging over x,, as in (6.2.8). A similar interpretation applies to W,
namely W(x) is the optimal cost over stages k, k+1,...,N con-
ditional on an initial state x, = x.

The solution of (6.2.2) is related in a simple way to that of the
‘deterministic’ Bellman equation (6.1.4). In fact,

Wi(x) = xTS(k)x + oy

where S(N) =@, S(N — 1),...,5(0) are given by the Riccati equation
(6.1.20) as before, and «, is a constant, to be determined below. Note
that if W, ,(x)=x"S(k + 1)x + &, ,, then for fixed x, v,
EW, . (A(k)x + B(k)v + C(k)w,)
= (A(k)x + B(k)v)'S(k + 1)(A(k)x + B(k)v)
+ 2E(A(k)x + B(kyv)"S(k + I)C(k)wk)
+ Ewi CT(k)S(k + DC(k)w,, + o, 4 4
= (A(k)x + B(k)v)"S(k + 1)(A(k)x + B(k)v)
+ tr[CT(k)S(k + 1)C(k)] + o 4
where the last line follows from the facts that Ew, =0, cov(w,) = I.
Notice that the final expression is identical to that obtained in the
deterministic case except for the term tr[CT(k)S(k + 1)C(k)] + oy . 4,
which does not depend on x or v and hence does not affect the

minimization on the right-hand side of (6.2.2). Thus if W, , ,(x)=
xTS(k + 1)x + o . ; then the induction argument as used in the
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deterministic case shows that
Wi(x) = xTS(k)x + a4 + tr[CT(k)S(k + 1)C(k)].

But Wy(x)=x"Qx, i.e. ay =0, so working backwards from k =n we
see that

N-1
oy = Zk tr[CT()S( + 1C()]-

Summarizing, we have the foilowing result.

Theorem 6.2.2

For the stochastic linear regulator with complete observations, the
optimal control is

ui(x) = — M(k)x,

where M(k) is given by (6.1.16), i.e. is the same as in the deterministic
case. The minimal cost is

4

Ca(t®) = mIS(O)mg + tr[S(O)P,] + Nf tr[CT(k)S(k + 1)C(K)].
. k=0
(6.2.9)

proOF The optimality of u' follows from Proposition 6.2.1. As to
the cost, we note that

W(x) = x"S(0)x + a

is the conditional minimal cost given that the process starts at x, = x.
Taking the expectation over the distribution of x4, and using

Proposition 1.1.3(b), we obtain (6.2.9). ]

Note that only the mean m, and covariance P, of the initial state
are needed to compute the optimal cost, so it is not necessary to
suppose that x, is normally distributed. The important feature of the
above result is that the matrices S(k) and M(k) do not depend on the
noise coefficients C(k), so that in particular the optimal control is the
same as in the deterministic case. Thus adding noise to the state
equation as in (6.2.1) makes no difference to the optimal policy, but
simply makes that policy more expensive. Indeed, if the system starts
at a fixed state x, (so that my, = x, and Py = 0) then the additional cost
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is precisely
NZ_I tr[CTRIS(k + DER)].

Let us now consider the discounted cost case. We will assume for
simplicity of notation that the coefficient matrices 4, B, D, F are time
invariant but, with later applications in mind, time variation will be
retained for C(k). Thus the problem is to minimize

N—1
E( Z P Dxy + Fuy||* + PNxexN)-
K=0
We use the same device as before, namely rewriting the cost as
N-—-1
E( ¥ ||Dx£+Fu£||2+x§,TQx§) . (6.2.10)
k=0

where x? = p*?x,, uf = p*?u,. Multiplying (6.2.1) by p** 12 shows
that x¢, uf satisfy |

Xt . = APxE + BPuf + C*(k)w, (6.2.11)

where A? = p'/2A, B* = p'/2B, C?(k) = p** P"2C(k). Now (6.2.10) and
(6.2.11) give the problem in non-discounted form. As noted above, the
optimal control does not depend on C?(k); applying our previous
results it is given by

ul(x)= — M*(k)x

where M*(k) is defined as in Section 6.1 above; The corresponding
cost is, from (6.2.9) ;

C(u?) = m} SP(O)my + tr[S?(0)P,] + N_f tr[CPT(k)SP(k + 1)C?(k)]

= m S/ (0)ymy + tr[SP(0)Po] + Nf Pt r[CT(k)SP(k + 1)C(k)].
k=0

The importance of the discount factor becomes apparent when we
consider infinite-horizon problems. Suppose that conditions (6.1.30)
are met and that $” is the solution to the algebraic Riccati equation
with coefficient matrices A, B®. Such a solution exists for any p < 1. .
Now consider the N-stage problem as above, with terminal cost
matrix Q = S*. This is the ‘matched impedance’ case, discussed at the,
end of Section 6.1, for which S?(k) = §° for all k. Thus the optimal
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control is the time-invariant feedback
up(xk) = — Mpxk S (6.2.12)

and the cost over N stages is

N-1
CE(uP) = mESPmgy + tr[SP,] + kZO P L [CT(K)SPCLk)].
(6.2.13)

Note that if p =1 (no discounting) and C(k)= C is constant, then
C%— o0 as N—oo and hence the infinite-time problem has no
solution (all controls give cost + co). This is not surprising. The
reason that finite costs could be obtained in the deterministic case was
that ||x,]| converged to zero sufficiently fast that

$ Ixl?
k=0

was finite. However, in the present case || x, || does not converge to zero
because at each stage it is being perturbed by the independent noise
term Cw,, and the controller has continually to battle against this
disturbance to keep || x, || as small as possible. If, however, p < 1, then

lim C& = mLSPmy + tr[S°Py] + -

N=w l—p

tr[CTSPC].  (6.2.14)

Thus any amount of discounting, however little, leads to a finite
limiting cost. One can show, by methods exactly analogous to those
used in the previous section, that the time-invariant control u” given
by (6.2.12) does in fact mintmize the cost

C’go(u)=E( Y pk||ka+Fuk||2) | (6.2.15)
k=0

and that the minimal cost is precisely the expression given in (6.2.14).
As to the conditions required, recall that if (4, B) is stabilizable then
(A*?, B®) is stabilizable for any p < 1; thus

(a) If conditions (6.1.30) are satisfied then the infinite time discounted
problem is well-posed, and has the above solution, for any p < 1.

(b) Ifeither of conditions (6.1.30) fails then we must take p < p, where
po is such that (47, B?), (D, A?) are stabilizable and detectable
respectively for any p < p,. Generally, p, < 1. -
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If C(k) is not constant then exactly similar results apply as long as

o0

Y. P [CT(K)SPC(k)] < oo

k=0

and this will certainly be the case for any p < 1 aslong as the elements
of C'(k) are uniformly bounded, i.e. there is some constant ¢, such that
for all i, j, k,

IC(k)ijl = ¢

This, in turn, is always true if the C(k) sequence is convergent, L€,
there is a matrix C such that C(k)— C as k — oc. The same control is
optimal but there is in general no closed-form expression, as in
6.2.14), for the minimal cost, which is now

mESPmg + tr[SPP, ]+ Y. p* T [CY(k)SPC(k)].  (6.2.16)
k=0 :
Let us now consider minimizing the average cost per unit time,
1 N-1
C,,(w)= lim —E[ Y ||ka+Fuk|[2:|. (6.2.17)
N—-w N k=0

As before we assume that all coefficients are constant except for the
noise matrices C(k) which are supposed to be convergent: C(k)— C as
k — cc. This is needed in the next section.

The limit in (6.2.17) may or may not exist for any particular control .
u, but it certainly does exist for all constant, stabilizing controls, i.e.
controls of the form uf = — Kx, where A:= A — BK is stable. For
then the closed-loop system is

X+ 1= Axy + Cllw,

and we know by a slight extension of results in Section 2.4 that
Q(k): = cov(x,) — @ where Q satisfies

Q=AQAT + CC".
Thus

C,(u¥) = lim }!v‘ i tr[(D — FK)Q(k)(D — FK)"]
k=0

N=owo
=tr[(D — FK)Q(D — FK)T].
If the pair (4, B) is stabilizable then a stabilizing K exists and the
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problem of minimizing C,,(#) is meaningful. We now show that C, ()
is minimized by the control u, = — Mx, where M is given by (6.1.28).
This is the same control policy that is optimal for the deterministic
infinite-time problem.

Theorem 6.2.3

Suppose conditions (6.1.30) hold. Then, among ail controls u for
which C,_(u) exists and E| x,|* remains bounded, the minimal
cost is achieved by the control u}(x) = — Mx where M is given by
(6.1.28). The minimal value of the cost is

C,(u")=tr[C'SC]
where § is the unique solution of the algebraic Riccati equation
(6.1.29).

PROOF It is shown in Appendix B that A — BM is stable, so that -
J, (ul) exists. Let S be the solution of the ARE (6.1.29) and consider
the N-stage problem of minimizing

N-1 -
Cilu) = E[ Y IDx, + Fu || + x}SxN]
k=0

This is the ‘matched terminal cost’ problem for which, from
Theorem 6.2.2, control u' is optimal. Thus for any control v,
N-1
Cp) = Cy(u')=mi Smy + tr[SP] + Z tr [CT(k)SC(k)].
K=o

(6.2.18)
Thus

.1 .|
131_1}33 N Cylu) = Alrl_{{}o NCN(ul) = C,,(u')

as long as the left-hand limit exists. But if C,.(u) exists and E||x,||* is
bounded, then

.1 .1
lim - Cy(w) = Cylw) + Im ~ EDiaSxy] = Cyfu).

This shows that u! is optimal. From (6.2.18) its cost is

N—co

C,(u')= lim %Nf tr[CT(k)SC(k)] = tr[CTSC]. 0
k=0
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The control u; = — M, is not the only optimal control for the
average cost per unit time problem. Indeed, for any integer j we can
write

I G et
Coft) = lim NELZO |Dxy + FukuZJ

1 Ao
+ lim vE[ ||ka+Fuk||2:|.
=

N—'ooN k

Now for any given control u,,

ji—1
E|: > IDx, + Fukilz]
0

is a fixed number not depending on N. Thus the first limit is zero, and
since (N —j)/N—1as N—- o0,

-

_ 1 N-1
C,(u)= }\lzlm ﬁ——JEli ||ka+Fuk||2].
— 0 —_ j

k=

The expression on the right is the average cost from time j onwards
starting in state x;, and its minimal value does not depend at all on
what controls u, were used for k < j. Thus any control of the form

> arbitrary, k<j
U, =
Tl — Mx,, k> j

is optimal. Thus the average cost criterion is only relevant when one is
mainly concerned with ‘long-run performance’; the idea is that the
system settles down to a statistically stationary state in which an
average of precisely tr[CTSC] is added to the cost at each stage,
and this is minimal. There is, however, nothing in the cost criterion
which specifies just how long this settling-down period is supposed
to last. The discounted cost formulation has the opposite effect: it
emphasizes performance during some initial interval the length of
which is effectively specified by the discount factor. In this case the
optimal control is unique. Another advantage of discounted costs
is that the stabilizability/detectability conditions can always be met
by sufficiently rapid discounting, whereas with average costs little
can be said if the original system matrices (4, B, D) do not satisfy
these conditions. '
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6.3. Partial observations and the separation principle

We now consider control problems associated with the full state-
space model

Xesy = AKX, + Blou, + Clyw, = (63.0)
¥ = H(k)x, + G(k)w,. (632

As before, the initial state x, has mean and covariance m,, P, and
is uncorrelated with w,. In this case the state x, cannot be measured
directly, but ‘noisy observations’ v =Yg, V1,---» i) are available at
time k. Thus the control u, will be a feedback function of the form

g = Ul y"). (6.3.3)

This is the ‘full LQG problem’. The difficulty here is, of course, that
knowledge of y* does not (except in special cases) determine x, exactly,
and the current state x, is just what is needed for controlling the
system at time k. We deal with this by replacing the state-space model
(6.3.1), (6.3.2) by the corresponding innovations representation. As
discussed in Section 3.4, this provides an equivalent model in the form

Fl

Ryp e = AR Ry, + Bk, + KK}y, - (6.3.4)
where the innovations process v, is given by
Ve = Y — HS o (635)
) that y, satisfies ' |
Vi = H(K)X 1+ v (6.3.6)

The Kalman gain K(k) is given by (3.3.5). The new ‘state’ of the system
is %, and this is determined exactly by y*~ 1. We thus reduce the
situation to one in which the state is known, and can then apply the
results of the previous section to determine optimal control policies.
First, however, the status of the innovations representation (6.3.4),
(6.3.6) must be clarified. We do this before continuing with our
discussion of optimal control problems in Section 6.3.2 below.

6.3.1 The Kalman filter for systems with feedback control

In the derivation of the Kalman filtering formulae in Section 3.3 it was
assumed that {w,} was a weak-sense white noise (w, and w, uncorrela-
ted for k # [) and that {u,} was a deterministic sequence. Under these
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conditions X,,_; given by (6.3.4) is the best linear (more precisely,

affine) estimator of x, given y* 1, and the input/output properties of
the model (6.3.4), (6.3.6) are identical to those of the original model -

(6.3.1), (6.3.2). Now, however, we wish to consider controls u; which
are not deterministic but which are feedback functions as in (6.3.3).
Further, there is no reason why u,(y*) should be a linear function of y*.
Suppose in fact that this function is nonlinear. Combining (6.3.3)-
(6.3.5), we see that £, _, satisfies

Rew e = AR Ry, + BRuY) + K(k) (v — HX)Xgy o) (6.3.7)

Given the sequence 3’ = (yg, Y15 - -, ;) one can use this equation for
k=0,1,...,j to compute %;,,,. Thus £,,,, is a function of y’, say
)ej+1|j = gj(yj)-

Now g, is a nonlinear function, due to the nonlinearity of u, in (6.3.7).
So _)EH ,,; cannot possibly be the_btj:st. linear estimator of x;, ; given W,
as it would be were u, deterministic. To get round this apparently
awkward fact, we use the alternative interpretation of the Kalman
filter, namely that if the w, are independent normal random vectors
and x, is normal, then X, ; is the conditional expectation of x;44
given y/. The advantage of this formulation is that there is no
requirement that a conditional expectation should be a linear function

of the conditioning random variables.

Theorem 6.3.1

Suppose that, in the model (6.3.1), (6.3.2), x4, wg, Wy, ... are normally
distributed and that u, is a feedback control as in (6.3.3). Let X, , ,be
generated by the Kalman filter equation of Theorem (3.3.1). Then

Rik—1= ElxJy* 1. (6.3.8)

The innovations process (6.3.5) is a normal white-noise sequence.

prROOF The proof relies on Proposition 1.1.6 which shows that
E[xj+ 1lyj] = E[xj+1|37j]

if y/, % are random vectors which are related to each other in a one-to-
one way, iLe. there are functions h;, b ' such that

P =hy), ¥ =h')

e
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Asin Section 3.4, let us write the state x, in(6.3.1)as x, = X, + xj,and
correspondingly y, = ¥, + yi, where X, xif, y, yif satisfy:

X+ 1 = AKX, + Clk)wy, Xo=xq—myg

= HI)Z, + Gllkpw, } (639)
XEeq = Alkxt + Bljuy"), x§ =mq

o — HOE. } (6.3.10)

Equations (6.3.9) are linear, so that X, ,, y, are zero-mean normal
random vectors for all k. x¥,; and yf are random vectors which
depend on j* since u,(3*)=u(y*+ y**). Applying the standard
Kalman filter results from Section 3.3 we see that X, e = ELX 44 7]
satisfies

§k+1|k = A(k)fk[k_l + K(k)(_}_)k - H(k)x:klk_l) (6.3.1 1)

where K(k)is given by (3.3.5). We cannot obtain (6.3.4) immediately by
adding (6.3.11) to (6.3.10) because the conditioning random variable is
y* and not y* as required. However, y* and y* are equivalent in the

sense mentioned earlier. Indeed, plainly from (6.3.10), x¥, and hence
k—1 _

yi&, is determined by y*7* = (yg, ¥y5.-.s V- 1) Thus
Vi =y — y¥ = ().

Conversely, suppose 3 = (¥y,7;...., ) Is given; then y, is deter-
mined. We show this by induction. Suppose that for j=0,1,...,k
there are functions f; such that .

yi=fi#). (6.3.12)

Then given y* we can calculate y;, 0 <j <k, and hence y¥, ,, using
(6.3.10). But now

Vir1=TFes1 tVie1 = for (5
Thus (6.3.12) holds for j=k + 1. At time zero,
¥§ = H(0)x§ = H(O)m,
and m, is known, so that
Yo = H(O)mgy + yo =: fo(¥o)-

Thus (6.3.12) holds for all j.and fi=h;1
This argument shows that j* and y* are obtained from each other in
a one-to-one fashion, and hence that

fk+1|k = E[% 1 1|y*] = E[Z 4 (V]
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Now x¥,, is a function of y*, so that

Elx¥e V<] = i1
Combining these relations, we obtain

E[Xes V] = E[xfr ) 4 Xrd 1]
= Xi+1 + X e
Adding the equations (6.3.10) and (6.3.11) shows that %X, ,,:=
E[x,+|y*] satisfies (6.3.4). Thus (6.3.4) is indeed the Kalman filter
when u, is a feedback control, as long as the disturbance process w, 1s
a normal white-noise process. As regards the innovations process v,
note that
V=V — H(k)ﬁklk—l .
= Vi + yi — Hk)(xg + Xpie_y) | E
= .}_}k—H(k)JEHk—l‘
Thus v, coincides with the innovations process corresponding to the

control-free system (6.3.9). It is therefore a normal white-noise process
with covariance

E[v,vl] = H(k)P()HT(k) + G(k) GT(k) (6.3.13)
as in Section 3.4. 3

It is perhaps worth pointing out that, even if w; is a normal white-
noise process, the state process x, is not necessarily normal, since
(6.3.1), (6.3.2) determine x, as a possibly nonlinear function of w* ™1,
However, the conditional distribution of x, given y*~ ! is normal, since
x, has the representation '

— 4k = =
Xy = Xg + Xy T Xy
= X1 T X1

where X, _, = X, — X,,_, is a normal random vector with mean 0 and
covariance P(k) given by (3.3.6): Thus the conditional distribution of
X given y* 71 is N(%,,_,, P(k)).

6.3.2 The linear regulator problem

Let us now return to the control problem of choosing u, to minimize
the cost

Cylu) = E(ZZ_:OI | D(k)x, + F(k)u||* + x%QxN). (6.3.14)
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This is the same form of cost as in Section 6.2 but a different class of
controls is involved. In this section we shall consider feedback
controls of the form

u, = w(y* ) | (6.3.15)

rather than u,(y*) as discussed above. Controls (6.3.15) are of course a
sub-class of those previously considered — we are now insisting that
the control u, should depend on the observations y; for times j up to,
but not including k, whereas previously dependence on Y also was
allowed. This restriction is introduced for two reasons. Practically, it
means that ‘instant’ data processing is then not required: at time k we
record the new observation yy, and apply the control u(y* ) which
can be computed somewhat in advance since it does not depend on yy.
Mathematically, controls (6.3.15) are related, as will be seen below, to
our formulation of the Kalman filter as a predictor, giving the best
estimate %, of Xy given y*~!. Analogous results can be obtained for
controls u,(y*), but these involve the Kalman filter in the form which
computes the current state estimate %, and this is somewhat more
complicated.

The cost Cy(u) in (6.3.14) is expressed in terms involving the state
variables x, ; we wish, however, to usc the innovations representation
(6.3.4) in which the state variable s %, . Thefirst task is therefore to
re-express Cy(u) in a way which involves X, -, rather than x,, and
this is done by introducing conditional expectations as follows:

k=0

CN(u)=E( i EL D0, + F(kugl*1y* "]

+ E[x}Qley””])- T (6.3.16)

Now x, can be expressed in the form
X = 32qu-1 + ik|k—1
where %,_, 15 2 function of y*~* and the estimation error Xy, is
independent of y*~ ' with distribution N(0, P(k)). We can simplify the
terms in (6.3.16) using this fact and properties of conditional
expectations. The last term is:
E[xy QxNDJN— N=E[Ryn1t iNiN—l)TQ('{éMN—-I + inw;)IJ’NF "
= ’ACJTV|N—1Q?%N|N—1 + E[i}IN—lQiNlN—llyN_ ']
= fC{quiwwq + tr[P(N)Q].

e AR
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Similarly the kth term in the sum becomes

EL(D(k)X e + Fk)u + D(k)ik]k—l)'r
(D(K)Rygp_, + Flluy + D(R)X0- Iy 1]
= | D(R)% i1 + FRJui|* + tr [P(k)D"(k)D(k)]

where we have used the fact that u,is a function of y*~ 1. Thus

N-1
Cylu)y= E( kZO | DCRY -1 + F(kyu,||> + 32-15|N-1Q32N|N»1>

+ :‘;: tr [D(K)P(K)DT(k)] + tr[P(N)Q]. 6.3.17)

This expresses Cy(u) in a way which involves the state %, of the
innovations representation. The important thing to notice about this
expression is that the first term is identical to the original expression
(6.3.14) with x; replaced by X, and that the remaining two terms
are constants which do not depend in any way on the choice of u.
Thus minimizing Cy(u) is equivalent to minimizing

N-1 .
E(k);o I D(k)R 1 + Full* + ﬁ}lwdeﬁNW_l) (6.3.18)

where the dynamics of £, are given by (6.3.4), namely
Rt = AR 1 + B(kyuy, + K(k)vy. (6.3.19)

Since the innovations process v; is a sequence of independent normal
random variables, the problem (6.3.18)-(6.3.19) is the standard
‘completely observable’ regulator problem considered in the previous
section. All coefficients are as before except for the ‘noise’ term K(k)vy
in (6.3.19). However, it was noted in Section 6.2 that the optimal
control for the linear regulator does not depend on the noise

" covariance. Therefore the optimal control coefficients are the same as
in the completely observable case. We have obtained the following
result:

Theorem 6.3.2

The optimal control for the noisy observations problem (6.3.1),
(6.3.2), (6.3.14) is

il = — M(K)Xy 1 | - (6.3.20)
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where M(k) is given as before by (6.1.16). The cost of this policy is

Cy(@) = mIS(0)m, + tr[P(N)Q] + Nil tr [D(k)P(k)D*(k)
k=0 .

+ GG (k)KT(K)S(k + 1)].
+ K(k)(H(k)P(k)H (k) - (6.3.21)

pROOF Only the expression (6.3.21) for the optimal cost remains to
be verified. We use the expression (6.2.9) for the completely observable
case. First, note that the initial condition for (6.3.19) is deterministic:
%1 = 0. Next, consider the contribution of the ‘noise’ term K(k)v,.
Define
¥ = [H(K)P(H (k) + G(K)G (k)] ™2,

(the inverse exists since by our standing assumptions G(k)G'(k) > 0).
From (6.3.13) we see that E[#, 7] = I, so that ¥, is a normalized white-
noise process, and (6.3.19) can be written

Resrpe = AR)Ryy_y + Blu, + K(K)[H(k)P()H (k) + G(k)G"(k)]'/27,.

This is now in the standard form of (6.2.1) with a new ‘C-matrix’
K[HPH™ + GG']'? and we can read off the optimal cost from
(6.2.9). Remembering that the two constant terms from (6.3.17) must
also be included, we obtain (6.3.21). O

Let us summarize the computations needed in order to implement |
the control policy described in Theorem 6.3.2. They are as follows:

(a) Solve the matrix Riccati equation of dynamic programming
backwards from the terminal time to give matrices S(N),..., S(0):

S(k) = A"(k)S(k + 1) A(k) + D"(k) D(k)
— [AT(k)S(k + 1)B(k) + DY (k)F(k)]
[BT(k)S(k + 1)B(k} + FT(k)F(k)]~1
[BY(k)S(k + 1)A(k) + FT(k})D(k)] (6.3.22)
S(N)=0Q. '
This determines the feedback matrices
M(k) = [BT(k)S(k + 1)B(k) + FT(k)F(k)] 1
[BY(k)S(k + 1)A(k) + FT(k)D(k)].

(b) Solve the matrix Riccati equation of Kalman filtering forwards
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from the initial time to give matrices P(0),..., P(N):
Pk + 1) = A(k)P(k)AT(k) + C(k)C(k) — [A(k)P(k)H (k) + C(k)GT(k)]
H(k)P()H'(k) + G(k)G"(k)]™*
[H(k)P(k)AT(k) + G(k)C'(k)] |
P(0)= P,. : (6.3.23)
This determines the Kalman gain matrices -
K(k) = [A(k)P()H"(K) + C(k)G"(k)][H(k)P(K)H (k) + G(k)G (k)] ™.

It is important to notice that these computations refer independ-
ently to the control and filtering problems respectively, in that (a)
involves the ‘cost’ parameters Q, D(k), F(k) but not the ‘noise’
parameters P,, C(k), G(k), whereas the converse is true in the case of
(b). |
The property that the optimal control takes the form #'(k)=
— M(k)%,,_, where M(k) is the same as in the deterministic or
complete observation cases, expresses the so-called ‘certainty-
equivalence principle’ which, put in another way, states that,
optimally, the controller acts as if the state estimate X, | were equal
to the true state x, with certainty. Of course, the controller knows that
this is not the case, but no other admissible strategy will give better
performance.

That M(k) is unchanged in the presence of observation noise is
entirely due to the quadratic cost criterion which ensures that the cost
function for the problem in innovations form is, apart from a fixed
constant, the same as that in the original form. On the other hand, the
fact that the intermediate statistic to be computed is %, _,, regardless
of cost parameters, is a property which extends to more general forms
of cost function. To see this, recall that whatever admissible control is
applied, the conditional distribution of x, given y* "' is N(%,,_,, P(k)).
Now suppose that the cost to be minimized takes a general form
similar to (6.1.14), i.e.

Cyu)=E ( Nil Ik, x5 ) + Q(XN))
k=0

where [ and g are, say, bounded functions. Introducing intermediate
conditional expectations, we can express Cy(u) as

Cult) = E( Y ELk xe w1+ Elgey)ly? 11).
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The conditional expectation can now be evaluated by integrating
with respect to the conditional distribution. This gives

ELk, xie, u)|y* ™11 = Tk, 2y, )

and
ELgxm)ly™ ™11 = gy )
where | |
| 1
O e
‘exp((z — X)TP~(k)(z — %)) dz
o 1
6= |
exp((z — )TP~Y{(N)(z — %)) dz.
Thus :

N—1 '
Cy(u) = E(kz Rk, Rigk—1> i) + é(ﬁNiN_l)). (6.3.24)

=0
The problem (6.3.19), (6.3.24) is now in innovations form and can be
solved by dynamic programming. Define functions W,,..., Wy by
Wi(X) = g(X)
W (%) = min {{(k, £, v) + EYW (A% + Bv + K(k)v,).
k=N-1,...,0 (6.3.25) .

where E® denotes expectation taken over the distribution of v,, which
is N(O, HP(k)H™ + GG™). Let 6i'(k, %) be a value of v which achieves
the minimum in (6.3.25). Then the optimal control is

ﬁé = ﬁl(k, -)ek|k— 1)
with minimal cost
Cy(1') = Wy(my).

This can be checked by the same sort of ‘verification theorem’ proved
earlier. Thus is this general problem the ‘data processing’ still consists
of calculating £,, , via the Kalman filter, but the control function
ii'(k, %) is not related in any simple way to the control function ul(k, x)
which is optimal in the case of complete observations.
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Y%
————»  System >y,
[N — y
7~
T @ k|1 Kalman filter |
b = Controller
Fig. 6.2

In summary, we see that the optimal controller separates into two
parts, a filtering stage and a control stage as shown in Fig. 6.2. The
filtering stage is always the same regardless of the control objective.
This is the separation principle. The certainty-equivalence principle
applies when 4'(k, x,) is the optimal completely observable control,
but this is a much more special property which holds only in the
quadratic cost case.

These results point to a general cybernetic principle, namely that
when systems are to be controlled on the basis of noisy measurements
the true ‘state’ of the system which is relevant for control is the
conditional distribution of the original state given the observations.
Note that in the LQG problem this is completely determined by £,
since the conditional distribution is N(X,, _,, P(k)) and P(k) does not
depend on the observations. Thus the Kalman filter in effect updates
the conditional distribution of x; given y*~!. The problem can be
solved in an effective way because of the simple parametrization of the
:onditional density and the fact that there is an efficient algorithm —
the Kalman filter — for updating the parameter %, _,. More general
problems typically involve extensive computation due to the lack of
any low-dimensional statistic characterizing the conditional
distributions.

6.3.3 Discounted costs and the infinite-time problem

In this section we will assume that the system matrices A, B, H, C, G
are time-invariant, that D(k) = p*2?D, F(k)= p**F, and that Q is
replaced by p™Q for some p < 1, so that the cost function becomes

N—-1
CRw) = El: kZO Pk | Dx, + Fuy ”2 + PNx};’QxN:l-
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In view of the ‘separation property’, the Kalman filter matrices P(k),
K(k) are unaffected by the discount factor p. By specializing the
preceding results, or by using an argument involving x{, uf as in
Section 6.2, one can verify that the control which minimizes C§(u) is

g = — M p(k))elqk—l
with M?(k) as before. The cost corresponding to 4 is

CR(@#) = m§ S?(O)mg + p™ tr[P(N)Q]
+ Nil p*tr[DP(k)DT

+ pK(k)[HP(HT + GGTIKT(k)S?(k + 1)].

Thus if a discount factor is introduced, the filtering computation (b) is
unchanged while, in the control computation (a), A and Bare replaced
by p/2A, p'/?B respectively.

Turning now to the minimization of the infinite-time cost,

C&(“)=E[ Y. Pk||ka+Fuk||2],
KTo

we have to consider the asymptotic properties of both Riccati
equations (6.3.32) and (6.3.23). The conditions required are as \follows

(4, B) .

(/i, Cv) stabilizable (6.3.26)
DA

EH’ A))} detectable

where : :
A=A4—-CG(GGNH 'H A=A4—B(F'F)"'F™D
C=C[I-G"GGN 'G] D=[I—F(F'F)~'F']D.

These conditions simplify under the additional conditions, assumed
at the outset in most treatments of LQG control, that CGT =0 (no
correlation between state and observation noise) and FTD =0 (no
‘cross-term’ in the cost criterion). Under these conditions, A = 4 = A,
C = C and D = D; thus conditions (6.3.26) stipulate that the system be
stabilizable from either the control or the noise input, and that it be
detectable either via the output Hx, or via the ‘output’ Dx, appearing
in the cost function.
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According to the results in Appendix B, conditions (6.3.26)
guarantee that the algebraic Riccati equations corresponding to
(6.3.22), (6.3.23) have unique non-negative definite solutions S, P
respectively and that the solutions of (6.3.22), (6.3.23) converge to §, P
for arbitrary non-negative definite terminal condition Q and initial
condition P, respectively. The optimal control for the infinite-time
problem can now be obtained by applying the results of Section 6.2
concerning the completely observable case. Indeed, the innovations
representation is, as above,

Resip = ALye_y + Buy + CR)F (6.3.27)
where ¥, is the normalized innovations process and
C(k) = K(k)[HP(k)HT + GGT]'/2.
Note that, as k— o0,
C(k)—» C = K[HPH™ + GGT]*/2,

where P is the solution of the algebraic Riccati equation and K the
corresponding Kalman gain. As in (6.3.17) the cost expressed in terms
of X,,_, 18

CE(w) = E[ S 0¥ Dy + Fuy 1|2] + 3 P te[DP(IDT]
k=0 k=0
(6.3.28)

and the final sum is finite since tr[DP(k)D"] = tr[DPDT] as k — 0.
We now apply the results of Section 6.2 to the infinite-time completely
observable problem constituted by (6.3.27), (6.3.28), and conclude that
the optimal control is

= — MPRy,_, (6.3.29)
with cost, as in (6.2.16),
mlSPmg + ki P+ L [CT(R)SoCk)] + ,Eo p*tr[DP(k)D*].
Substituting for C(k) gives the final cost expression
C? (4°) = my §Pm, + kio P [DP(k)DT

+ pK(k)[HP(k)HT + GGT]K"(k)S*]].
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Appearances to the contrary, 4 given by (6.3.29) is not a constant-
coefficient controller since the gain K(k) in the Kalman filter depends
on P(k) which is not constant unless P, happens to be equal to the
stationary value P. A simpler control algorithm is obtained if K(k) is
replaced by its stationary value K =[APH"+ CG"] [HPH'+
GGT] ™%, that is we apply the control value

= — M°z, ' (6.3.30)
where z, is generated by '

Zxy1 = Az, — BM’z, + K(y, — Hz)
20 = mo ) . (6.3.31)

(this is the Kalman filter algorithm with P(k) replaced by P). Of
course, z; is in general not equal to £, ,. Control £ is not optimal for
the discounted cost problem, but #! is optimal in the sense of
minimizing the average cost per unit time,

1 N
Co() = lim NELZO ||ka+Fuk||2:|. (63.32)

As remarked earlier, this criterion is insensitive to the behaviour of the
process for small k; and, for large K, z;, and X, , are practically
indistinguishable.

Theorem 6.3.3

Suppose conditions (6.3.26) hold. Then the control #' given by
(6.3.30), (6.3.31) with p = 1 minimizes C,(u) in the class of all output
feedback controls such that C, () exists and E || x, || * is bounded. The
minimal cost 1s

C.(8") = tr[DPDT + K(HPH™ + GGTK"S].  (6.3.33)

PrROOF It follows from the arguments above and Theorem 6.3.2
that the control 4} of (6.3.20) is optimal for C,, and that its cost is
given by the expression in (6.3.33). Thus it remains to show that ¢’ is
“admissible and that its cost coincides with that of 4'.

Define &,: = x, — z,. Recalling that y, = Hx, + Gw, and hence that
y, — Hz, = H(x, — z,) + Gw,, we see that the joint process (z,,¢,)
satisfies:



63 PARTIAL OBSERVATIONS o 289

zei |_[A-BM  KH [z],[ KG |
Ea |l o Aa—kH||le|T|crke (M-
.y [?‘] + Cw,. (6.3.34)
k

Under conditions (6.3.26) both A — BM and A — KH are stable. This
implies that A is stable since the eigenvalues of 4 are those of
(A — BM) together with those of (4 — KH). Thus the covariance
matrix &, of (x,,&,) is convergent to Z satisfying = = AZAT + CC™.
Since x; = &, + z,, this shows that E| x,|* is bounded and C, (")
exists. Note that

Al Y Zk
ka + ka = D
Sk

where D = (D — FM, D), so that
C,(6")=tr[DED"].

The process n,:=col {£,,_, X} satisfies (6.3.34) with 4 and C
replaced by A(k) and C(k) obtained by substituting K(k) for K in 4
and C. Denote I'(k): = cov(n,). Then I'(k) satisfies

I'(k+ 1)= AT (k) AT (k) + C(k)C (k) - (6.3.35)
We know that I':= lim I'(k) exists and that
k- o

C,.(#') = tr[DI'DT].

Taking the limit as k— oo in (6.3.35) we sec that I' satisfies I' =
AI'AT + CC", i.e. T = Z. This completes the proof. O

Finally, a remark on the stabilizability and detectability conditions
(6.3.26). The conditions on (A4, B), (D, A) ensure that $?, the solution to
the ‘discounted’ algebraic Riccati equation, exists for any p < 1, but if
these conditions are not met then S” may only exist for p < p, for
some p,< 1. According to the separation principle, however,
discounting has no effect on the Riccati equation (6.3.23) generating
P(k) so that no weakening of the conditions on (4, C) and (H, A) is
possible. The reason for this minor asymmetry in the problem is of
course that, while we are free to select the cost function coefficients D,
F in any manner we choose, their counterparts C and G in the filtering
problem are part of the system specification.
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As in the complete observations case, little can be said about the
average cost problem if conditions (6.3.26) are not met.

Notes

Dynamic programming was introduced in its modern form by
Bellman (1957). Recent texts describing various aspects of it include
Bertsekas (1976) and Whittle (1981). The linear regulator problem.
was solved by Kalman (1960} who also noted the filtering/control
duality. For references on properties of the Riccati equation and the
algebraic Riccati equation, see Chapter 3. The use of linear/quadratic
control as a design methodology for multivariable systems has been
pioneered by Harvey and Stein (1978); see also Kwakernaak (1976).
The ‘certainty-equivalence principle’ was first enunciated in the
economics literature, by Simon (1956). The ‘separation principle’ is
clearly presented (for continuous-time systems) in Wonham (1968)
and is also discussed in Fleming and Rishel (1975). The stochastic
linear regulator 1s discussed in one form or another in most texts on
stochastic control, including Bertsekas (1976) and Whittle (1981).
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