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1 Introduction

We provide here some historical remarks and background on Kalman filtering and linear
quadratic gaussian control.

1.1 Historical Remarks

The famous MIT mathematician Norbert Wiener developed optimal estimation theory
for continuous-time problems during the 2nd World War. The solution was, however, in
non-recursive form (state space methods where not yet well-known then). This made it
difficult to apply the theory. Recursive solutions to optimal estimation problems were
obtained by Rudolf Kalman using state space methods in the 1960’s. These techniques
form now the popular field of Kalman filtering. Many researchers contributed to the
development of robust numerical implementations of Kalman filtering techniques. The
discrete-time solutions are especially useful in applications.
Optimal linear quadratic control problems with incomplete state information were also

solved in the 1960’s. These developments were based on dynamic programming, developed
by Richard Bellman in the 1950’s, and also on Kalman filtering. The solution of the linear
quadratic gaussian (LQG) control problem resulted in the famous separation theorem of
LQG control. Lyapunov and Riccati matrix equations are the most important numerical
objects in both Kalman filtering and LQG control.

1.2 Applications

Kalman filtering has been an important technique in various space craft, satellite, orbit
tracking, and other tasks associated with various space programs, such as the famous
Apollo program (astronauts landed to the moon).
Sensor fusion is an important area in which information from a number of different

(types of) sensors are combined dynamically to make it possible to estimate various quan-
tities that can not be measured directly at all or not accurately (or cost effectively) by
any single sensor. Kalman filtering is a basic dynamical estimation technique in this area.
GPS (global positioning system) instruments often use Kalman filtering. More gener-

ally, Kalman filtering is an essential technique in model-based sensors.
Linear quadratic (LQ) and LQGmethods were already applied in the 1960’s to various

missile guidance and other guidance problems. The first reported application of LQG
control in process industries is by Karl Johan Åström in the mid 1960’s at the IBM
Nordic Laboratory. (IBM was then planning to enter the industrial process computer
market.) This application involved paper machine control.
Robustness properties (against modelling uncertainty) of LQ/LQG control were stud-

ied intensively in the late 1970’s and in the 1980’s. These studies resulted in the LQG/LTR
technique for improving robustness properties of LQG controllers. (Here LTR stands for
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Loop Transfer Recovery.) These studies culminated in the development of modern robust
control theory in the 1980’s and in the 1990’s. (H∞ robust control is perhaps the most
popular of these theories.) Kalman filtering and LQ/LQG control can be seen as the first
applicable estimation and control theories based on an optimality principle.

1.3 References

The literature on Kalman filtering and LQG control is huge. We shall be very brief in
our account of the literature.
The book by M.S. Grewal and A.P. Andrews (Kalman Filtering. Theory and Practice,

Prentice Hall, 1993) describes the history and numerical aspects of Kalman filtering in an
excellent way. The book by J.A. Farrell and M. Barth (The Global Positioning System
& Inertial Navigation, McGraw-Hill, 1999) describes an important application of Kalman
filtering.
The popular book by K.J. Åström and B. Wittenmark (Computer Controlled Sys-

tems. Theory and Design, Prentice-Hall) had already in its 1st edition from 1984 a good
introduction to Kalman filtering and LQG control. The book by K.J. Åström (Introduc-
tion to Stochastic Control Theory, Academic Press, 1970) is a classic graduate level book
on stochastic control, dealing with both continuous-time and discrete-time systems. The
book by P. Dorato, C. Abdallah and V. Cerone (Linear-Quadratic Control. An Introduc-
tion, Prentice-Hall, 1995) gives an account of some of the later developments concerning
LQ control, too. The many connections between modern robust control and LQ control
are explained in the book by K. Zhou, J.C. Doyle and K. Glover (Robust and Optimal
Control, Prentice-Hall, 1996). A classic reference on robustness of LQ and LQG control
against modelling uncertainty is the book by M.G. Safonov (Stability and Robustness of
Multivariable Feedback Systems, MIT Press, 1980).

2 Review of Probability Concepts

The purpose of this section is to provide a brief review of essential probability concepts.

2.1 Basic Probability Concepts

• elementary event
• event = some collection of elementary events
• sample space (event space) = set of all possible elementary events

Example 1 Play with two dice: Each die has six numbered faces (with 1,2,3,4,5, and 6
spots, respectively). After a throw of the two dices (die I and die II), each die has one
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face up. An elementary event of the play is (i, j), where i and j denote the number of
dots on the top face of die I and of die II, respectively. There are 36 elementary events
(i, j), i, j = 1, . . . , 6. The sample space Ω is thus given by

Ω = {(i, j) | i, j = 1, . . . , 6}.

Define event A = sum of spots is 5, i.e.

A = {(1, 4), (2, 3), (3, 2), (4, 1)}, A ⊂ Ω.

• discrete sample (event) space = sample space Ω contains only a finite or numerable
number of elementary events

• continuous sample space = sample space Ω contains a denumerable number of ele-
mentary events

• set theory concepts and Venn diagrams are very useful

Example 2 The play with two dice continues! The event B = both dice have the same
number of spots on the top face, i.e.

B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

The set union A ∪B means the event that either A or B takes place, and so

A ∪ B = {(1, 4), (2, 3), (3, 2), (4, 1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

The set intersection A ∩ B means the event that both A and B take place. Clearly here
A ∩ B = ∅ = the empty set. That is, A and B are disjoint events.
The event G = both dice have 5 spots on the top face. Then A ∩G = ∅, B ∪G = B,

B ∩G = G, and A ∪ B ∪G = A ∪ B. Note that G ⊂ B.

2.2 Kolmogorov Axioms

A probability measure P (·) is a function, which associates to each event A,B, etc in an
event space Ω real numbers P (A), P (B), etc, called the probability of A, B, etc, so that
the following axioms hold

Axiom1 : 0 ≤ P (·) ≤ 1
Axiom2 : P (Ω) = 1

Axiom3 : P (A ∪ B) = P (A) + P (B) if A and B are disjoint
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or more generally

Axiom 3’ : If A,B,C, . . . is a numerable sequence of pairwise disjoint events, then

P (A ∪ B ∪ C ∪ . . .) = P (A) + P (B) + P (C) + . . . .
(Ω, P (·)) is called a probability space. One also needs to specify the events in Ω for which
P (·) is defined. Call this set of events F . For discrete Ω one can simply take F to be
the set of all subsets of Ω. For continuous Ω it is usually not convenient (or possible) to
define P (·) for all subsets of Ω. F is then usually taken to be some so-called σ− algebra,
i.e.

A ∈ F ⇒ Ac = complement of A in Ω ∈ F
{Aj ∈ F}∞j=1 ⇒ ∪∞1 Aj ∈ F .

Example 3 The play with two dice continues!

• assume that both dice are well-made (symmetrical)
• each elementary event is taken to be equally probable
• use axiom 3 repeatedly

We compute

P (A) =
4

36
=
1

9
, P (B) =

6

36
=
1

6
Furthermore

P (A ∪B) = 10

36
=
5

18
, P (A) + P (B) =

4

36
+
6

36
=
10

36
=
5

18
,

in agreement with axiom 3.

2.3 Conditional Probability

Define the conditional probability, P (B | A), of event B when event A has taken place as

P (B | A) ≡ P (A ∩ B)
P (A)

, P (A) > 0.

Example 4 The play with two dice continues! The event C = sum of spots is five (5)
and both dice show a prime number. Thus C = {(2, 3), (3, 2)}. Then

P (B | A) = 0

P (A)
= 0, B is impossible if A has taken place

P (C | A) = P (A ∩ C)
P (A)

=
2/36

4/36
=
1

2
.
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The law of total probability can be stated as follows: Let {Hi}ni=1 be pairwise disjoint
events, such that

∪ni=1Hi = Ω, P (Hi) > 0, i = 1, . . . , n.

Then for any event A

P (A) =
nX
i=1

P (Hi)P (A | Hi).

We verify this relationship by computing:

P (A) = P (A ∩ Ω) = P (A ∩ ∪ni=1Hi) = P (∪ni=1(A ∩Hi)) =Pn
i=1 P (A ∩Hi) =

Pn
i=1 P (Hi)P (A | Hi),

where the last equality follows from the definition of conditional probability.

The notion of independence of events is introduced as follows. If P (B | A) = P (B)

then A and B are said to be independent. We see that then P (A | B)P (B) = P (A ∩
B) = P (A)P (B) and so P (A | B) = P (A) (assuming P (A) > 0 and P (B) > 0), i.e.
independence is an equivalency relationship and furthermore then

P (A ∩ B) = P (A)P (B).

This relationship is often taken as the definition of independence of the events A and B.

Example 5 The play with two dice continues! The event D = die I shows 3 spots and
the event E = die II shows 5 spots. In terms of elementary events

D = {(3, 1), (3, 2), . . . , (3, 6)}, E = {(1, 5), (2, 5), . . . , (6, 5)}.

Then
P (D ∩ E) = 1

36
= P (D)P (E) =

6

36

6

36
=
1

36
.

Note that D ∩E = {(3, 5)}.

2.4 Stochastic Variables

A stochastic (random) variable (s.v.) is a function defined on a sample space,

X : Ω→ R (or X : Ω→ C).

This is actually the definition of a one-dimensional s.v. (Here R and C denote the set of
real numbers and the set of complex numbers, respectively.)

Definition 2.1 The function FX : R → R given by FX(x) = P (X ≤ x) is called the
distribution function of the s.v. X.
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Here the event X ≤ x means the collection of all elementary events e for which X(e) ≤ x.

Example 6 The play with two dice continues! Let X give the sum of spots in the two
dice. Then FX(x) = 0 for x < 2, FX(x) = 1/36 for 2 ≤ x < 3, FX(x) = 3/36 for
3 ≤ x < 4, and so on. FX(x) has a jump at x = 2, 3, . . . , 12 and FX(x) = 1 for x ≥ 12.
X is a discrete s.v.

A stochastic variable (s.v.) X is continuous if

(a) FX(x) is continuous for all x
(b) FX(x) is differentiable with a continuous derivative except possibly at a finite number
of x values

(Several different definitions appear in the literature.)

Definition 2.2 The derivative
fX(x) =

dFX
dx

is called the (probability) density function of the stochastic variable X.

Note that for a continuous s.v. X, it holds that

P (a ≤ X ≤ b) =
Z b

a

fX(x) dx (= FX(b)− Fx(a)).

Clearly fX(x ≥ 0 as FX(x) is a monotonically increasing function.

2.5 Multidimensional Stochastic Variables

A two dimensional stochastic variable (s.v.) is a function (X, Y ) defined on an event
(sample) space,

(X, Y ) : Ω→ R2.

The probability distribution function of the s.v. (X, Y ) is defined as

FX,Y (x, y) = P (X ≤ x, Y ≤ y),

where x and y are real numbers. Here the event X ≤ x, Y ≤ y means the collection of
all elementary events e for which X(e) ≤ x and Y (e) ≤ y. Note that FX,Y : R2 → R.
Obviously, it holds that

0 ≤ FX,Y (x, y) ≤ 1 for any x,y.

The (probability) density function of the s.v. (X, Y ) is defined by

P (a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2) =
Z b1

a1

Z b2

a2

fX,Y (x, y) dx dy.
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Remark 2.1 The stochastic variable (s.v.) (X,Y ) is said to be continuous if FX,Y (x, y)
is continuous for all x and y and if

∂2FX,Y
∂x∂y

= fX,Y (x, y)

exists and is continuous except possibly at a finite number of points (x, y) ∈ R2. Note
that fX,Y (x, y) ≥ 0.

The relationship between fX(·) and fX,Y (·, ·) is as follows

P (a ≤ X ≤ b) = R b
a
fX(x) dx =

P (a ≤ X ≤ b,−∞ < Y∞) = R b
a
[
R∞
−∞ fX,Y (x, y) dy]dx,

and so

fX(x) =

Z ∞

−∞
fX,Y (x, y) dy.

Note that fX is often called the marginal density function of X.
The conditional distribution of X given Y ∈ I, where I is an interval, is

FX|Y (x | I) =
R x
−∞
£R
I
fX,Y (ξ, η)dη

¤
dξR∞

−∞
£R
I
fX,Y (ξ, η)dη

¤
dξ
,

where it is assumed that the denominator is greater than zero. The conditional density
function of X given Y ∈ I is

fX|Y (x | I) =
R
I
fX,Y (x, η)dηR∞

−∞
£R
I
fX,Y (ξ, η)dη

¤
dξ

Denote Iδ = I = [y − δ/2, y + δ/2], where δ > 0. Let fX,Y (ξ, η) be continuous at (x, y).
Define

fX|Y (x | y) ≡ lim
δ→0

fX|Y (x | Iδ) = fX,Y (x, y)

fY (y)
,

where it is assumed that fY (y) > 0. (Here fY (y) =
R∞
−∞ fX,Y (x, y) dx is the marginal

density function of Y .) The function fX|Y (x | y) is the conditional (probability) density
function of X given Y = y.

The stochastic variables X and Y are said to be independent if

fX|Y (x | y) = fX(x), i.e. if

fX,Y (x, y) = fX(x)fY (y)

holds for any x and y.
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The expectation, mean value, of a stochastic variable X is defined as

E[X] =

Z ∞

−∞
xfX(x) dx

(for a discrete stochastic variable E[X] =
P

x xP (X = x)). Note that E[X] need not be
well-defined, i.e. the integral in the definition might not exist. If

R∞
−∞ |xfX(x)| dx < ∞

then E[X] exists (as a real number).

Example 7 The Cauchy distribution has the density function

fX(x) =
1

π(1 + x2)
.

Then

E[X] = lim
a→−∞,b→∞

Z b

a

x
1

π(1 + x2)
dx,

but clearly the double limit does not exist, i.e. E[X] does not exist as a real number.

Let us now consider the expected value of functions of a stochastic variable (s.v.). Let
Z = g(X), where g is a function of the s.v. X. The expected value of Z is then

E[Z] =

Z ∞

−∞
zfz(z) dz =

Z ∞

−∞
g(x)fX(x) dx, i.e.

E[g(X)] =

Z ∞

−∞
g(x)fX(x) dx,

when the above integral exists.

The conditional mean of Z = g(X) given Y = y (here X and Y are dependent s.v.s) is

E[Z | Y = y] =
Z ∞

−∞
fZ|Y (z | y) dz =

Z ∞

−∞
g(x)fX|Y (x | y) dx, i.e.

E[g(X) | Y = y] =
Z ∞

−∞
g(x)fX|Y (x | y) dx.

An important relationship for expectations is obtained as follows.

E[g(X)] =
R∞
−∞ g(x)fX(x) dx =

R∞
−∞ g(x)[

R∞
−∞ fX,Y (x, y) dy]dx =R∞

−∞[
R∞
−∞ g(x)fX|Y (x | y)dx]fY (y) dy =

R∞
−∞E[g(X) | Y = y]fY (y) dy = EY [E[g(X) | Y ]],

where EY [·] denotes expectation over the s.v. Y . Here we have assumed that the order
of integration can be changed (this is true if the associated double integral exists). The
above relationship expresses the law of total probability for expectations, that is

E[g(X)] = EY [E[g(X) | Y ]]. (1)
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Check: If X and Y are independent s.v.s then E[g(X) | Y = y] = E[g(X)] and the right
hand side of (1) reduces to E[g(X)].

The variance of a stochastic variable is defined as

var(X) = E[(X − E[X])2] =
Z ∞

−∞
(x− E[X])2fX(x) dx.

Similarly, the covariance of the s.v.s X and Y is defined as

cov(X, Y ) = E[(X −E[X])(Y −E(Y ))] =
Z ∞

−∞

Z ∞

−∞
(x−E[X])(y−E[Y ])fX,Y (x, y) dxdy

Remark 2.2 For Z = g(X, Y ) we have that

E[Z] =

Z ∞

−∞

Z ∞

−∞
g(x, y)fX,Y (x, y) dxdy

when the double integral exists.

We have so far only considered one-dimensional and two-dimensional stochastic vari-
ables. Vector-valued stochastic variables are introduced in the following manner. Let
Xi, i = 1, 2, . . . , n, be mutually dependent (or possibly independent) stochastic (random)
variables. X = [X1, X2, . . . , Xn]

T is then said to be an n−dimensional stochastic variable.
(Here the superscript T denotes vector transpose.)
Define the expected value of X as

E[X] =

E[X1]...
E[Xn]

 ∈ Rn,
where Rn denotes the (Euclidean) space of all n− tuples of real numbers. The covariance
matrix of X is defined as

[cov(X)]ij = E[(Xi − E[Xi])(Xj −E[Xj ])]

or in compact matrix notation

cov(X) = E[(X − E[X])(X −E[X])T ]

Note that cov(X) is a symmetric positive semidefinite matrix, i.e.

[cov(X)]T = cov(X) and vT cov(X)v ≥ 0

for all v ∈ Rn.
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2.6 Stochastic Processes

Many applications of stochastic variables (s.v.s) involve families of s.v.s called stochastic
processes.
A stochastic process is a family of stochastic variables Xt, where t is a parameter

running over a suitable index set T (sometimes we write X(t) instead of Xt). Here T
could be e.g. the set of all integers Z, the set of natural numbers N, or the interval [0,∞).
A realization or sample function of a stochastic process {Xt, t ∈ T} is an assignment, to
each t ∈ T , of a possible value of Xt. For example T could correspond to discrete units of
time T = N = {0, 1, . . .} and {Xt} could then represent the outcomes at successive trials
(throwing dice etc.).

(X(t1), X(t2), . . . , X(tm))
T , where ti, i = 1, 2, . . . ,m, are m distinct index values, is an

m− dimensional stochastic variable. The function
FX(x1, . . . , xm; t1 . . . , tm) = P (X(t1) ≤ x1, . . . ,X(tm) ≤ xm)

denotes the probability distribution function of this m − dimensional s.v. (xi ∈ R, i =
1, . . . ,m, are real numbers). Similarly, the function fX(x1, . . . , xm; t1, . . . , tm) defined by

FX(x1, . . . , xm; t1, . . . , tm) =

Z x1

−∞
· · ·
Z xm

−∞
fX(ξ1, . . . , ξm; t1, . . . , tm) dξ1 · · · dξm,

is called the probability density function of the s.v. (X(t1), X(t2), . . . , X(tm))T .

The mean value function of the stochastic process {X(t)} is defined by

mX(t) = E[X(t)] =

Z ∞

−∞
xfX(x; t) dx.

(Here X(t) is a one-dimensional stochastic variable for any t ∈ T .) The covariance
function of the stochastic process X(t) (we simplify the notation {X(t)}, (X(t)) and
(X(t))t∈T often by writing X(t) for the stochastic process in question) is defined by

rXX(t) = cov[X(s),X(t)] = E[(X(s)−mX(s))(X(t)−mX(t))] =R∞
−∞
R∞
−∞(x1 −mX(s))(x2 −mX(t))fX(x1, x2; s, t) dx1dx2.

We shall often need to consider the case when {X(t), t ∈ T} is a vector stochastic process,
i.e. when X(t) is a function from some event space Ω into the n− dimensional Euclidean
space Rn, i.e. when

X(t) =

X1(t)...
Xn(t)


Then

mX(t) = E[X(t)] =

E[X1(t)]...
E[Xn(t)]
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is a function from T into Rn. Similarly the covariance function X(t) is then

rXX(t) = cov[X(s), X(t)] = E[(X(s)−mX(s))(X(t)−mX(t))
T ] =

E[{(Xi(s)− (mX)i(s))(Xj(t)− (mX)j(t))}n×n].

(The notation {aij}n×n means an n× n matrix with general element aij.)
A stochastic process X(t) is called stationary if the probability distribution function of
X(t1),. . .,X(tm) is identical to the distribution function of X(t1+ τ),. . .,X(tm+τ ) for any
m ≥ 1, for any distinct t1,. . ., tm in T and for any τ such that t1 + τ , . . ., tm + τ are in
T , too. Note that we denote compactly

FX(x1, . . . , xm; t1, . . . , tm) = P (X(t1) ≤ x1, . . . , X(tm) ≤ xm)

as the probability distribution function of X(t1),. . .,X(tm), where xi ∈ Rn, i = 1, . . . ,m,
and the inequalities are vector inequalities! (So here the vector inequality X(t1) ≤ x1
means that Xj(t1) ≤ (x1)j for all j = 1, . . . , n and (x1)j ∈ R denotes the j−th component
of the vector x1 ∈ Rn.) The condition for stationarity is then

FX(x1, . . . , xm; t1 + τ, . . . , tm + τ) = FX(x1, . . . , xm; t1, . . . , tm)

for all possible (admissible) choices of m, x1, . . ., xm, t1, . . ., tm and τ . Here usually the
index variable t (t ∈ T ) is a time variable!
Note that we could order the distribution functions FXi(x; t), i = 1, . . . , n, in a vector
(here Xi(t) is a one-dimensional s.v. and so x is a scalar, i.e. x ∈ R)

FX(x; t) ≡
 FX1(x; t)...
FXn(x; t)


and similarly the density functions fXi(x; t),i = 1, . . . , n, in a vector fX(x; t), and write
compactly

E[X(t)] =

Z ∞

−∞
xf

X
(x; t) dx =

Z ∞

−∞
x dFX(x; t) ∈ Rn.

(Here we have expressed the mean value of the multi-dimensional s.v. X(t) using the mar-
ginal distribution functions FXi(x, t) for the one-dimensional s.v.s. Xi(t), i = 1, . . . , n.)

Note that if
mX(t) = constant for all t

and rXX(s, t) depends only on the difference s− t, then the stochastic process (X(t)) is
called weakly stationary. A stationary s.p. (stochastic process) is also weakly stationary,
but the reverse need not hold.
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A s.p. (X(t)) with covariance function

rXX(t, t+ τ) = δ(τ )Σ,

where the Kronecker delta symbol δ(τ ) = 1 if τ = 0 and δ(τ) = 0 for τ 6= 0, is
called (discrete-time) white noise when T is a discrete-time index set (e.g. T = Z =
{. . . ,−2,−1, 0, 1, 2, . . .}). Here Σ denotes a symmetric positive semidefinite matrix of
dimensions n× n (X(t) has n components).

3 Stochastic State Space Models

In this section we discuss state space models or state space systems in a stochastic context.
Such models are central in Kalman filtering and LQG control.

3.1 Discrete State Space Systems

We consider linear stochastic discrete-time systems described by the (state space) equa-
tions

x(t+ 1) = Ax(t) +Bu(t) + w(t) (2)

y(t) = Cx(t) + v(t), (3)

where x(·) is the state vector (of dimension n), u(·) is the input vector (of dimension
p), y(·) is the output vector, t denotes discrete time (normalized by dividing with the
sampling time) t ∈ N = {0, 1, 2, . . .} (or t ∈ Z). Furthermore A, B and C are matrices of
appropriate dimensions, and {w(t)} and {v(t)} are white noise processes with zero mean
values and with the covariance matrices

E[w(t)w(s)T ] =

½
R1, if t = s
0, if t 6= s

E[v(t)v(s)T ] =

½
R2, if t = s
0, if t 6= s

E[w(t)v(s)T ] =

½
R12, if t = s
0, if t 6= s

where R1, R2 and R12 are given matrices (so-called covariance matrices). Furthermore it
is assumed that

E[w(t)x(t)T ] = 0 and E[v(t)x(t)T ] = 0.

Often (in books etc.) it is also assumed that

R12 = 0

as this simplifies many derivations and expressions.
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We should note that it is often natural to interpret (3) as the measurement equation (y(·)
denotes then measured signals). In (2)-(3) the terms w(t) and v(t) are called the the
process noise and the measurement noise, respectively.

Remark 3.1 In applications the state space model (2)-(3) is often a sampled model of a
continuous-time system.

Let us consider the computation of the mean value (function) of the state x(t). Con-
sider the case that u(t) = 0 for all t equal or greater than some initial time t0. Denote
mx(t) = E[x(t)]. Then by (2)

mx(t+ 1) = Amx(t) + E[w(t)] = Amx(t), t ≥ t0 (4)

as w(t) has zero mean value by assumption. Note that this difference equation has the
initial value mx(0) = E[x(0)] assuming t0 = 0 to be the initial time.
Using (4) repeatedly we get that

mx(t) = A
tmx(0), t ≥ 0.

Hence mx(t) → 0 as t → ∞ if A is a stable matrix, i.e. if all the eigenvalues of A are
located strictly inside the unit circle (that is, if all the solutions λ of det(A − λI) = 0

satisfy |λ| < 1).
The covariance matrix of the state x(t) is defined as

Px(t) = E[(x(t)−mx(t))(x(t)−mx(t))
T ].

Let us evaluate the state covariance matrix when u(t) = 0 for all t ≥ 0. Then (2) and (4)
give that

Px(t+ 1) = E[(Ax(t) + w(t)−mx(t+ 1))(Ax(t) + w(t)−mx(t+ 1))
T ] =

E[(A(x(t)−mx(t)) + w(t))(A(x(t)−mx(t)) + w(t))
T ] =

E[A(x(t)−mx(t))(A(x(t)−mx(t))
T ] +R1 = APx(t)A

T +R1 (5)

as w(t) has zero mean and as E[x(t)w(t)T ] = (E[w(t)x(t)T ])T = 0 by assumption.
Let Px(0) denote the initial value of Px(t). What happens when t→∞? By repeated

use of (5) we get that

Px(t) = A(APx(t− 1)AT +R1)AT +R1
= A2Px(t− 1)(AT )2 +AR1AT +R1
= A2(APx(t− 2)AT +R1)(AT )2 +AR1AT +R1
= A3Px(t− 2)(AT )3 +A2R1(AT )2 +AR1AT +R1
= . . . (6)

= At+1Px(0)(A
T )t+1 +

tX
s=0

AsR1(A
T )s (7)
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If A has all its eigenvalues strictly inside the unit circle then At → 0 as t → ∞ (here 0
denotes the zero matrix of size n× n) in such a way that the limit

lim
t→∞

tX
s=0

AsR1(A
T )s

exists. Hence Px ≡ limt→∞ Px(t) exists in this case and Px is then given by
Px =

X
s≥0
AsR1(A

T )s (8)

Note that by (8)
APxA

T = Px −R1
or equivalently

Px = APxA
T +R1 (9)

This equation is a linear matrix equation in (the unknown symmetric, positive semidefinite
matrix) Px. Due to the great importance of this equation, it has its own name — the
algebraic discrete matrix Lyapunov equation. The difference equation (5) is often called
the discrete Lyapunov difference equation.

Example 8 Let dimx = n = 1. Then (7) reduces to (denoting a = A and r1 = R1 as
here A and R1 are real numbers, i.e. scalars)

px(t) = a
2t+2px(0) +

tX
s=0

a2sr1,

where we use the notation px = Px as Px is here a scalar. For |a| < 1 the sum in this
equation is a convergent geometric series and soX

s≥0
a2sr1 =

r1
1− a2 .

The limiting value of px(t) is thus given by

px = lim
t→∞

px(t) =
r1

1− a2
as limt→∞ a2t+2px(0) = 0 for any px(0) when |a| < 1.

Remark 3.2 Consider the deterministic state space system

x(t+ 1) = Ax(t) (10)

with given initial state x(0) = x0. (Here A is a stable matrix.) Let us look at the quantity

P =
X
s≥0
x(s)x(s)T .
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By (10)

APAT =
P

s≥0Ax(s)(Ax(s))
T =

P
s≥0 x(s + 1)x(s+ 1)

T =P
k≥1 x(k)x(k)

T = P − x(0)x(0)T

and so
P = APAT +R, (11)

where R = x(0)x(0)T . The similarity of (9) and (10) implies that the same numerical
algorithms and software can be used to solve both stochastic problems and deterministic
initial value problems.

3.2 Numerical Solution of the Lyapunov Equation

The algebraic Lyapunov matrix equation that we consider here is of the form (9) or (11),
i.e.

P = APAT +R, (12)

where A is a given STABLE square matrix of size n × n, P is an unknown symmetric
positive semidefinite matrix and R is a given symmetric positive semidefinite matrix,
meaning that R = RT and xTRx ≥ 0 for any x ∈ R.
Methods to solve (12):

1) Equation (12) is a linear system of equations in the unknown elements Pij, j ≤ i,
i = 1, 2, . . . , n, of P (i.e. there are (n(n + 1)/2 unknown variables). It is, however, not
practical to solve (12) as a standard linear equation system problem (say e.g. using Gauss
elimination) especially when n is large (n(n+1)/2 grows very fast, e.g. for a system with
20 state variables n = 20, and so n(n+1)/2 = 210, and with n = 200, n(n+1)/2 = 21000,
i.e. already a VERY BIG system of linear equations).

2) Direct iteration: Here one iterates as

Pk+1 = APkA
T +R1, P0 > 0,

starting with an arbitrary symmetric positive definite matrix P0 (positive definite matrix
means that xTP0x > 0 for any nonzero x ∈ Rn). The convergence of Pk to a solution can
be very slow, especially if A has one or more eigenvalues near the unit circle. (Obviously
convergence does not take place if A is not a stable matrix.)

3) Accelerated iteration — a simple and fast method. Here one defines the sequence (Sk)k≥1
by

S1 = R

S2 = S1 +AS1A
T

S3 = S2 +A
2S2(A

2)T
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S4 = S3 +A
4S3(A

4)T

... =
...

Sk+1 = Sk +A
2k−1Sk(A

2k−1)T , k ≥ 1,
the last equation representing how the general element Sk+1 is obtained from Sk. Clearly

Sk+1 = R+ARA
T + . . .+A2

k−1
R(A2

k−1
)T ,

so that Sk → P when A is stable. The number of terms doubles in the above sum at each
iteration step.
Note that by writing Wk = A

2k−1, we see that the accelerated iteration procedure can
be put in the form

S1 = R, W1 = A

S2 = S1 +W1S1W
T
1 , W2 =W

2
1

S3 = S2 +W2S2W
T
2 , W3 =W

2
2

... =
...

Sk+1 = Sk +WkSkW
T
k , Wk+1 =W

2
k .

Due to the matrix multiplications involved in this method, it can be sometimes difficult to
get very high-accuracy solutions with this method. Matrix transformations to real Schur
form are used in certain software, cf MATLABTM.

3.3 ARMAX and State Space Models

AutoRegressive Moving Average with eXternal input (ARMAX) models are a popular
class of input-output models of the form

y(t+ 1) = A1y(t) + . . .+Aqy(t− q + 1) +B0u(t− L) + . . .+
Bru(t− L− r) + e(t+ 1) + . . .+ Cse(t− s+ 1),

where Ai, Bj and Ck are matrices of appropriate dimensions, y is the output, u is the input
and e is white noise with zero means. Furthermore, L ≥ 0 is the input delay. ARMAX
models are quite popular in various applications. Note that ARMAX models can be
written as state space models in many ways. E.g. one can introduce (for L = 1, 2 . . .) the
state vector x(t) = [y(t)T , . . . , y(t−q+1)T , u(t−1)T , . . . , u(t−L)T , e(t)T , . . . , e(t−s+1)T ]T
and rewrite the ARMAX model in state space form. Note that the so obtained state space
model need not be a minimal realization of the ARMAX model (i.e. a state space model
of the lowest possible state space dimension with the same input-output mapping as the
ARMAX model).

Example 9 Consider the ARMAX system

y(t+ 1) = ay(t) + bu(t) + e(t+ 1) + ce(t),
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where it is assumed that a+ c 6= 0 and |c| < 1 and E[e(t)2] > 0.
Introduce the state vector x(t) = y(t)− e(t). Then

x(t+ 1) = ax(t) + bu(t) + (a+ c)e(t)

y(t) = x(t) + e(t)

is a minimal state space realization of the ARMAX system. Denote w(t) = (a + c)e(t)
and so w(t) is the process noise term in the above state space system. Note that here

E[w(t)e(t)] = (a+ c)E[e(t)2] > 0

and so in this case the process and measurement noise terms are correlated!
Now introduce x1(t) = y(t) and x2(t) = e(t). Then the ARMAX system can be written

as (i.e. it has the nonmimimal state space realization:)µ
x1(t+ 1)
x2(t+ 1)

¶
=

µ
a c
0 0

¶µ
x1(t)
x2(t)

¶
+

µ
b
0

¶
u(t) +

µ
1
1

¶
e(t+ 1)

y(t) = [1 0]

µ
x1(t)
x2(t)

¶
Here

w(t) =

µ
1
1

¶
e(t+ 1)

is the process noise term. Clearly

R1 = E[w(t)w(t)
T ] =

µ
1 1
1 1

¶
E[e(t)2]

and R2 = 0, i.e. the covariance matrix (or here the variance) of the measurement noise
term is zero as there is no measurement noise term present in this state space realization.

4 Optimal Estimation
In this section we study optimal estimation in the sense of a mean square estimation error
criterion as necessary preparation for the study of optimal estimation of the state of a
state space system from measured output values.

4.1 Minimum Variance Estimation

Here we start with general minimum variance estimation without assuming a dynamic
context. Thus let X and Y be mutually dependent (possibly vector-valued) stochastic
variables. The task is to estimate the value of X given that Y = y (i.e. that the stochastic
variable Y has obtained the value y). The estimate x̂ of X given Y = y is taken to be a
function of the information about Y only, i.e. x̂ = x̂(y).
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We shall use the popular conditional mean square error as a measure of the estimation
error. The condition mean square estimation error is the quantity

E[(X − x̂)T (X − x̂) | Y = y]. (13)

The minimum mean square estimate (minimum variance estimate, least squares estimate)
x̂ of X given Y = y is defined by the condition

E[(X − x̂)T (X − x̂) | Y = y] ≤ E[(X − z)T (X − z) | Y = y] (14)

which is to hold for every allowable estimate z = z(y) of X given Y = y.
Can we characterize the best estimate x̂ in the sense of (14) more explicitly? It turns

out that the minimum mean square estimate (MMS estimate) is given uniquely as the
conditional mean of X given Y = y, i.e.

x̂ = E[X | Y = y] =
Z ∞

−∞
· · ·
Z ∞

−∞
xfX|Y (x | y) dx1 · · · dxn, (15)

where n = dimx. Here fX|Y (x | y) denotes the (conditional) joint density function of
X1, . . . , Xn given Y = y (recall that X = [X1, . . . ,Xn]

T ).

This is seen as follows. Let z = z(y) denote any admissible estimate of X given Y = y.
Then the conditional mean square error can be expressed as

E[(X − z)T (X − z) | Y = y] = E[XTX | Y = y]− 2zTE[X | Y = y] + zTz =
(z −E[X | Y = y])T (z −E[X | Y = y]) + E[XTX | Y = y]

−(E[X | Y = y])TE[X | Y = y].
Here (z−E[X | Y = y])T (z−E[X | Y = y]) ≥ 0 for any z and the terms E[XTX | Y = y]
and (E[X | Y = y])TE[X | Y = y] are independent of z. Hence

E[(X − z)T (X − z) | Y = y] ≥ E[XTX | Y = y]− (E[X | Y = y])TE[X | Y = y]
and the lower bound is attained by the estimate

z = E[X | Y = y]
which is thus the MMS estimate of the value of X given Y = y.

Remark 4.1 Note that for the estimate x = x(y), it holds that

E[(X − x(Y ))T (X − x(Y ))] = EY [E[(X − x(Y ))T (X − x(Y )) | Y ]] (16)

by the law of total probability for the expectation E[g(X, Y )]:

E[g(X, Y )] = EY [E[g(X, Y ) | Y ]].
Hence x̂(y) = E[X | Y = y] minimizes also the unconditional expectation (16).
The function x̂(Y ) is called an estimator; it is a stochastic variable!
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4.2 Interlude: Properties of Normally Distributed Stochastic
Variables

Here we consider properties of an important class of stochastic variables (s.v.s), namely
normally distributed s.v.s.

An nX − dimensional normally distributed vector (s.v.) X with mean value mX and the
covariance matrix RX has the probability density function

fx(x) =
1

(2π)nX/2(detRX)1/2
exp[−1

2
(x−mX)

TR−1x (x−mX)] (17)

Here it is assumed that the matrix inverse R−1X exists ⇔ detRX 6= 0: (if R−1X does not
exist, then x can be written as x = Tx̄ with dim x̄ < dimx, where x̄ has a nonsingular
covariance matrix.)

Properties: Let X and Y be jointly normally distributed vectors. Denote

Z =

µ
X
Y

¶
.

Now Z is normally distributed with mean value denoted as

m =

µ
mX

mY

¶
and the (symmetric) covariance matrix denoted as

R =

µ
RX RXY
RY X RY

¶
. (18)

Here RTXY [= (RXY )
T ] = RYX as RT = R.

Then:
(a) The stochastic variables X and Y are independent if and only if they are uncorrelated.
(b) The conditional distribution of X given Y = y is also normal with mean value

mX|Y = E[X | Y = y] = mX +RXYR
−1
Y (y −mY ) (19)

and the covariance matrix

RX|Y = E[(X −mX|Y )(X −mX|Y )T | Y = y] = RX −RXYR−1Y RY X (20)

(c) The stochastic variables Y and X −mX|Y are independent.

The above properties can be derived as follows.
(a) As independence implies the uncorrelated property, we only need to establish that if
X and Y are uncorrelated (normally distributed s.v.s) then they are independent. Thus
consider the conditional probability distribution function

fX|Y (x | y) = fX,Y (x, y)

fY (y)
(21)
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where (cf. (17))

fY (y) =
1

(2π)nY /2(detRY )1/2
exp[−1

2
(y −mY )

TR−1y (y −mY )] (22)

and nY is the dimension of Y . We need to show that fX|Y (x | y) = fX(x) (or which is the
same thing that fX,Y (x, y) = fX(x)fY (y)) if X and Y are uncorrelated.
We proceed to evaluate fX,Y (x, y) (recall that Z = [XT , Y T ]T ):

fX,Y (x, y) = fZ(z) =
1

(2π)nZ/2(detR)1/2
exp[−1

2
(z −m)TR−1(z −m)], (23)

where nZ = nX + nY is the dimension of Z. We need to express R−1 and detR in terms
of RX , RXY , RY X and RY in R in (18). Introduce the auxiliary matrices

A =

µ
I −RXYR−1Y
0 I

¶
and B =

µ
I 0

−R−1Y RYX I

¶
,

where I denotes an identity matrix of appropriate size (so I is a generic notation for an
identity matrix of arbitrary size). Then

ARB =

µ
I −RXYR−1Y
0 I

¶µ
RX RXY
RY X RY

¶µ
I 0

−R−1Y RYX I

¶
=

µ
RX −RXYR−1Y RY X 0

RYX RY

¶µ
I 0

−R−1Y RY X I

¶
=

µ
RX −RXYR−1Y RY X 0

0 RY

¶
.

By the rules for computing determinants of products of matrices, we get that

det(ARB) = detA× detR× detB = 1× detR× 1 = detR.
Hence

detR = det

µ
RX −RXYR−1Y RY X 0

0 RY

¶
= det(RX −RXYR−1Y RYX) detRY . (24)

Now µ
I RXYR

−1
Y

0 I

¶µ
I −RXYR−1Y
0 I

¶
=

µ
I 0
0 I

¶
= InZ×nZ ,

where we have stressed that the last identity matrix has nZ rows (and nZ columns). Thus
the inverse of A is given by

A−1 =
µ
I RXYR

−1
Y

0 I

¶
.

Furthermore µ
I 0

R−1Y RY X I

¶µ
I 0

−R−1Y RY X I

¶
=

µ
I 0
0 I

¶
,
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and so the inverse of B is given by

B−1 =
µ

I 0
R−1Y RYX I

¶
.

Now we are ready to determine an expression for the inverse of R. Denote C = (ARB)−1.
Observe that

C = (ARB)−1 =

µ
RX −RXYR−1Y RYX 0

0 RY

¶−1
=

µ
(RX −RXYR−1Y RYX)−1 0

0 R−1Y

¶
and as (ARB)−1 = B−1R−1A−1, we get that

R−1 = BCA. (25)

Thus

(z −m)TR−1(z −m) = ((x−mX)
T , (y −mY )

T )R−1
µ
x−mX

y −mY

¶
=

((x−mX)
T , (y −mY )

T )

µ
I 0

−R−1Y RY X I

¶
C

µ
I −RXYR−1Y
0 I

¶µ
x−mX

y −mY

¶
=

[xT −mT
X − (y −mY )

TR−1Y RY X , y
T −mT

Y ]C

µ
x−mX −RXYR−1Y (y −mY )

y −mY

¶
=µ

x−mX −RXYR−1Y (y −mY )
y −mY

¶T
×µ

(RX −RXYR−1Y RY X)−1(x−mX −RXYR−1Y (y −mY ))
R−1Y (y −mY )

¶
=

(x−mX −RXYR−1Y (y −mY ))
T (RX −RXYR−1Y RY X)−1(x−mX −RXYR−1Y (y −mY ))

+(y −mY )
TR−1Y (y −mY )

Combining the above result with (21)-(25), we see that the conditional density function
fX|Y (x | y) is given by

fX|Y (x | y) = K exp[−12(x−mX −RXYR−1Y (y −mY ))
T (RX −RXYR−1Y RYX)−1 ×

(x−mX −RXYR−1Y (y −mY ))], (26)

where
K =

1

(2π)nX/2[det(RX −RXYR−1Y RYX)]1/2
.

Note that if X and Y are uncorrelated then RXY = 0 and RYX = 0 so then by (26)
fX|Y (x | y) = fX(x). We have therefore established that property (a) holds.
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Furthermore, we see that (b) holds by inspection from (26)! To establish that (c)
holds, we compute the the covariance matrix E[(X −mX|Y )(Y −mY )

T ]:

E[(X −mX|Y )(Y −mY )
T ] = E[(X −mX −RXYR−1Y (Y −mY ))(Y −mY )

T ] =

E[(X −mX)(Y −mY )
T ]−RXYR−1Y E[(Y −mY )(Y −mY )

T ] = RXY −RXYR−1Y RY = 0,

and so X −mX|Y and Y are uncorrelated normally distributed stochastic variables and
hence by (a) independent, too.

Remark 4.2 By (15) and (b) when X and Y are normally distributed s.v.s, the MMS
estimate is an affine function of y! (A linear function if mX = 0 and mY = 0.) It is
said that the MMS estimator is then a linear estimator . In general, the optimal estimate
depends nonlinearly on y.

A Useful formula

Let X, U and V be normally distributed vector-valued stochastic variables, and let U and
V be independent. Then

E[X | U = u, V = v] = E[X | U = u] + E[X | V = v]− E[X]. (27)

This we see as follows. Put

Y =

µ
U
V

¶
.

It holds by independence of U and V that RUV = 0 and thus

RY =

µ
RU 0
0 RV

¶
.

Furthermore

RXY = E[(X −mX)(Y −mY )
T ] =

E[(X −mX)(U −mU)
T , (V −mV )

T ] = [RXU RXV ]

and so

RXYR
−1
Y = [RXU , RXV ]

µ
R−1U 0
0 R−1V

¶
= [RXUR

−1
U XVR

−1
V ].

Therefore by (19) and (20) in (b), it follows that

E[X | U = u, V = v] = E[X | Y = (uT , vT )T ] =
mX + [RXUR

−1
U RXVR

−1
V ][(u

T , vT )T − (mT
u ,m

T
v )
T ] =

mX +RXUR
−1
U (u−mU) +RXVR

−1
V (v −mV ) =

[mX +RXUR
−1
U (u−mU)] + [mX +RXVR

−1
V (v −mV )]−mX =

E[X | U = u] + E[X | V = v]−mX .
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4.3 Linear Estimators

We shall now proceed to study so-called linear estimators as defined in remark 4.2. The
MMS estimator is, in general, a nonlinear estimator. Hence it is, in general, hard to
determine the MMS estimator due to the difficulty in evaluating the conditional mean
E[X | Y = y], except in the case of normally distributed stochastic variables.
Consider the problem of determining the optimal linear estimate (optimal in the mean

square sense)
x̂ = x̂(y) = Ay + b (28)

which minimizes the mean square error

` ≡ E[(X − x̂)T (X − x̂)]. (29)

Note that we can not use the conditional mean square error (13) here as this would define
the optimal values of A and b as functions of y, i.e. we would obtain a nonlinear estimate
(estimator), in general. This is avoided when using (29) as the expectation is taken here
over the joint distribution of X and Y .
We write, cf. (28),

AY + b = (A b )

µ
Y
1

¶
= BZ,

where B = (A b) and

Z =

µ
Y
1

¶
= (Y T 1)T .

Then

` = E[(X −BZ)T (X −BZ)] = E[XTX]− 2E[XTBX] + E[ZTBTBZ]. (30)

Interlude: Trace function for matrices.

Let S be a square matrix (of size n× n). The trace of S, trS, is defined as

trS =
nX
i=1

Sii.

Clearly then trST = trS. Let P be an n×m and T an m× n matrix. Then

tr(PT ) =
nX
i=1

(
mX
j=1

PijTji) =
mX
j=1

nX
i=1

TjiPij = tr(TP ).

Now back to obtained expression (30) for the mean square error `. Using the trace
function we can write (30) as

` = E[XTX]− 2E[tr(BZXT )] + E[tr(BZZTBT )]

= E[XTX]− 2tr(BE[ZXT ]) + tr(BE[ZZT ]BT )
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Then we complete squares and get

` = tr
n£
BE[ZZT ]−E[XZT ]¤ (E[ZZT ])−1 £BE[ZZT ]− E[XZT ]¤To
−tr©E[XZT ](E[ZZT ])−1(E[XZT ])Tª+ E[XTX]

Note that here only the first trace expression depends on B, i.e. of the parameters with
respect to which ` is to be minimized.
Let H be any matrix and let Hi denote the i − th column of H. As tr(HTGH) =P
iH

T
i GHi ≥ 0 for any positive definite (and symmetric) matrix G of compatible dimen-

sions (so that the product HTGH makes sense), it follows that ` is minimized by choosing
B so that BE[ZZT ]− E[XZT ] = 0, i.e.

BE[ZZT ] = E[XZT ] (31)

Here

E[ZZT ] = E

·µ
Y
1

¶
(Y T 1 )

¸
=

µ
E[Y Y T ] E[Y ]
(E[Y ])T 1

¶
and so

E[ZZT ] =

µ
RY +mYm

T
Y mY

mT
Y 1

¶
as RY = E[Y −mY )(Y −mY )

T ] = E[Y Y T ]−mYm
T
Y .

Furthermore
E[XZT ] = E[X(Y T 1)] = (E[XY T ] mX).

We need to express E[XY T ] using known quantities. So we compute

RXY = E[(X −mX)(Y −mY )
T ] = E[XY T ]−mXm

T
Y −mXm

T
Y +mXm

T
Y .

This gives that
E[XY T ] = RXY +mXm

T
Y .

Using the definition of B and the above expressions for E[ZZT ] and E[XZT ] gives that

(A b )

µ
RY +mYm

T
Y mY

mT
Y 1

¶
= (RXY +mXm

T
Y mX )

and so

A(RY +mYm
T
Y ) + bm

T
Y = RXY +mXm

T
Y (32)

AmY + b = mX

Inserting b = mX − AmY in (32) gives that ARY = RXY . Thus the optimal values of A
and b are

A = RXYR
−1
Y

b = mX −RXYR−1Y mY
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Hence the optimal linear estimate (estimator) is given by

x̂ = Ay + b = mX +RXYR
−1
Y (y −mY ) (33)

The optimal linear estimate (33) is the same result that we obtained in section 4.2 (see
equation (19)) as the optimal estimate over all linear and nonlinear estimators for normally
distributed variables. In the general case, the estimate (33) is only the optimal linear
estimate (in general

E[X | Y = y] 6= mX +RXYR
−1
Y (y −mY ),

where the left-hand side is the gobally optimal estimate and the right-hand side is the
optimal linear estimate).

Properties of the estimate (33)

For the estimate (33) the estimation error X − x̂ satisfies
(i) E[X − x̂] = 0 (zero mean value)
(ii) E[(X − x̂)Y T ] = 0 (uncorrelated with Y )
(iii) E[(X − x̂)x̂T ] = 0 (uncorrelated with x̂)

The terminology "uncorrelated with Y " in (ii) is justified as by (i) and (ii): E[(X −
x̂)(Y −mY )

T ] = E[(X − x̂)Y T ] = 0. Similarly in (iii), it follows from (i) and (iii) that
E[(X − x̂)(x̂−mx̂)

T = E[(X − x̂)x̂T ] = 0. Note that mx̂ = E[X] = mX by (i).
Properties (i)-(iii) are established as follows. To derive (i), we compute

E[X − x̂] = E[X]−mX −RXYR−1Y E[Y −mY ] = 0

To establish (ii), we compute

E[(X − x̂)Y T ] = E[XY T ]− E[(mX +RXYR
−1
Y (Y −mY ))Y

T ] =

RXY +mXm
T
Y −mXm

T
Y −RXYR−1Y E[(Y −mY )Y

T ] =

RXY −RXYR−1Y E[(Y −mY )(Y −mY +mY )
T ] = RXY −RXYR−1Y RY − 0 = 0,

where we have used that RY = E[(Y −mY )(Y −mY )
T ] and E[Y −mY ] = 0.

Finally, property (iii) follows directly by inserting (33) and using (i) and (ii).

For normally distributed variables (i)-(iii) follow directly from properties (a)-(c) in section
4.2: so property (i) holds as

E[X − x̂] = E[X]−EY [E[X | Y ]] = 0
by the law of total probability. By property (b) in section (4.2), we know that Y and
X −mX|Y = X − x̂ are independent implying (ii) and (iii).

5 Optimal State Estimation — The Kalman Filter
In this section we consider optimal state estimation and derive the optimal estimator,
which is called the Kalman filter. There are actually several minimum variance state
estimation problems of interest depending on the information available to the estimator,
corresponding to predictive and filtering forms of the Kalman filter.

27



5.1 The Predictive Kalman filter

Consider the state space system

x(t+ 1) = Ax(t) +Bu(t) + w(t) (34)

y(t) = Cx(t) + v(t) (35)

where {w(t)} and {v(t)} are sequences of independent normally distributed vectors (sto-
chastic variables) with zero mean values and the covariance matrices

E[w(t)w(s)T ] = R1δt,s

E[v(t)v(s)T ] = R2δt,s (36)

E[w(t)v(s)T ] = 0 (37)

where δt,s = 1 for t = s and δt,s = 0 for t 6= s (δt,s is the so-called Kronecker delta).
It is assumed that the initial state x(t0) is normally distributed with mean value m and
covariance matrix R0, and that the initial state is independent of {w(t)} and {v(t)}.

Remark 5.1 We are here using somewhat stronger assumptions for the noise (normality!)
than in the state space model (2)-(3) in section 3.1 (there the noise was assumed to
be white), motivated by the result of the previous section that in the case of normal
distributions, we can express explicitly the global minimummean square (MMS) estimate!

We shall now consider state estimation for the system (34)-(35). We shall assume that
at time t, the following information is available:

Vt = [y(t0)
T , y(t0 + 1)

T , . . . , y(t)T , u(t0)
T , u(t0 + 1)

T , . . . , u(t)T ]T .

We consider the problem of finding the estimate x̂ of x(t + 1) based on the information
Vt, so that the conditional mean square error

E[(x(t+ 1)− x̂)T (x(t+ 1)− x̂) | Vt]

is minimized. By the result (15) the MMS estimate is given by

x̂(t+ 1 | t) = E[x(t+ 1) | Vt],

i.e. as the conditional mean of x(t + 1) given the information Vt. As we have assumed
that all the stochastic variables are normally distributed, the conditional mean is given
explicitly by (19). However, since the dimension of the vector Vt grows with time, it would
be inefficient to apply (19) directly.

Can we find recursive expressions so that x̂(t+ 1 | t) is computed from x̂(t | t− 1) when
information about y(t) and u(t) is obtained? (It was Kalman’s BIG contribution to show
that this can indeed be done efficiently.)
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At the initial time t0, write

x̂(t0 | t0 − 1) ≡ E[x(t0)] = m

(We assume no information about y and u prior to the time t0!) Then we proceed by
induction, assuming that x̂(t | t− 1) is given, and find an expression for x̂(t+ 1 | t).
At time t we have

x̂(t+ 1 | t) = E[x(t+ 1) | Vt] = E[x(t+ 1) | Vt−1, y(t), u(t)]. (38)

Now we shall use a property of the conditional mean as given in (27) — so this is a useful
formula as claimed earlier! In order that this result can be used, the expectation must
be taken with respect to stochastic variables which are independent. For this reason we
introduce

ỹ(t | t− 1) = y(t)− E[y(t) | Vt−1] = y(t)−E[Cx(t) + v(t) | Vt−1],

where the last equality follows by (35). Suppose v(t) is independent of u(t−1), u(t−2), . . .,
u(t0). (This holds for example if u is a given (deterministic) signal or if say u(t) = Ky(t)
or u(t) = K1y(t) +K2y(t− 1), i.e if u(t) is given by causal feedback of y(t), y(t− 1) and
so on.) Then

ỹ(t | t−1) = y(t)−E[Cx(t) | Vt−1]−E[v(t)] = y(t)−CE[x(t) | Vt−1] = y(t)−Cx̂(t | t−1).

Note that y(t) = ỹ(t | t−1)+Cx̂(t | t−1) and as x̂(t | t−1) is determined by Vt−1, we
can replace in (38) Vt by Vt−1, u(t), ỹ(t | t− 1). (This gives the same information state!)
Furthermore, we observe that

ỹ(t | t− 1) = C(x(t)− x̂(t | t− 1)) + v(t) = Cx̃(t | t− 1) + v(t),

where
x̃(t | t− 1) = x(t)− x̂(t | t− 1)

denotes the estimation error. Hence as by property (c) in section 4.2, x̃(t | t − 1) is
independent of Vt−1, so is ỹ(t | t − 1). Therefore we can proceed from (38) to compute
using (34)

x̂(t+ 1 | t) = E[x(t+ 1) | Vt−1, u(t), ỹ(t | t− 1)] =
E[Ax(t) +Bu(t) + w(t) | Vt−1, u(t), ỹ(t | t− 1)] =
AE[x(t) | Vt−1, u(t), ỹ(t | t− 1)] +Bu(t) + E[w(t)]

as u(t) is a known vector at time t (it belongs to the information state at time t) and w(t)
is independent of Vt−1 and ỹ(t | t− 1), and as w(t) is also assumed to be independent of
u(t).
Finally, we use that E[w(t)] = 0 by assumption and so

x̂(t+ 1 | t) = AE[x(t) | Vt−1, u(t), ỹ(t | t− 1)] +Bu(t). (39)
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The value of the above conditional expectation depends on what we assume about the
input u(t). We consider two cases. Firstly, if u(t) is a function of Vt−1 and y(t) (or
equivalently of Vt−1 and ỹ(t | t− 1)), as in the case of causal input-output feedback, then

E[x(t) | Vt−1, u(t), ỹ(t | t− 1)] = E[x(t) | Vt−1, ỹ(t | t− 1)]

as the two indicated information states are then equivalent. In this case it therefore holds
by (27) that (finally we can apply this formula!)

E[x(t | Vt−1, u(t), ỹ(t | t− 1)] = E[x(t) | Vt−1] + E[x(t) | ỹ(t | t− 1)]−E[x(t)]. (40)

Secondly, if {u(t)} is some given (deterministic) sequence or a realization of a stochastic
process independent of x(t0), {w(t)} and {v(t)} then

E[x(t) | Vt−1, u(t), ỹ(t | t− 1)] = E[x(t) | Vt−1, u(t)] + E[x(t) | ỹ(t | t− 1)]−E[x(t)] =
E[x(t) | Vt−1] + E[x(t) | ỹ(t | t− 1)]−E[x(t)]

as we can again apply equation (27) and as u(t) now contains no additional information
about x(t) compared to Vt−1. Note that the above obtained relationship is the same as
(40).
Recalling the definition x̂(t | t− 1) = E[x(t) | Vt−1] and inserting (40) into (39) gives

finally that

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +A (E[x(t) | ỹ(t | t− 1)]−E[x(t)]) . (41)

We need to evaluate E[x(t) | ỹ(t | t − 1)]. We use property (b) of normally distributed
stochastic variables in section 4.2, i.e. the relationships (19)-(20). We need the covariance
matrices Rxỹ and Rỹ. So we compute

E[ỹ(t | t− 1)] = E[y(t)]− E[E[y(t) | Vt−1]] = E[y(t)]− E[y(t)] = 0

by the law of total probability. Thus

Rxỹ = E[(x(t)− E[x(t)])ỹ(t | t− 1)T ] = E
h
(x(t)− E[x(t)]) (Cx̃(t | t− 1) + v(t))T

i
=

E[(x(t)− E[x(t)])x̃(t | t− 1)T ]CT

as {w(t)} and {v(t)} are mutually independent and w(t) and v(t) are independent of x(t)
and have zero means.
Now

E
£
(E[x(t)])x̃(t | t− 1)T ¤ = E[x(t)]E[x̃(t | t− 1)T ] = 0

since
E[x̃(t | t− 1)] = E[x(t)]− E[E[x(t) | Vt−1]] = E[x(t)]−E[x(t)] = 0

by the law of total probability. So the earlier obtained extression for Rxỹ simplifies to

Rxỹ = E[x(t) | x̃(t | t− 1)T ]CT .
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Then

Rxỹ = E
£
(x̂(t | t− 1) + x̃(t | t− 1)) x̃(t | t− 1)T ¤CT = E[x̃(t | t− 1)x̃(t | t− 1)T ]CT

as by the properties of an optimal estimate

E[x̂(t | t− 1)x̃(t | t− 1)T ] = 0,
see property (c) in section 4.2 and property (iii) of the optimal linear estimator in section
4.3, the optimal linear estimate being also the globally optimal estimate in the case of
normally distributed stochastic variables.
Introduce the covariance matrix for the estimation error x̃(t | t− 1)

Px(t) = E[x̃(t | t− 1)x̃(t | t− 1)T ].
Then we can write Rxỹ as

Rxỹ = Px(t)C
T .

We proceed to evaluate Rỹ. We recall that ỹ(t | t − 1) = Cx̃(t | t − 1) + v(t) and so
E[ỹ(t | t− 1)] = 0. Thus

Rỹ = E[ỹ(t | t− 1)ỹ(t | t− 1)T ] = E
h
(Cx̃(t | t− 1) + v(t)) ((Cx̃(t | t− 1) + v(t))T

i
=

CPx(t)C
T +R2

as E[x̃(t | t − 1)v(t)T ] = 0. Now we are ready to apply property (b) in section 4.2 to
obtain an expression for the term E[x(t) | ỹ(t | t− 1)]. Thus

E[x(t) | ỹ(t | t− 1)] = E[x(t)] + K̄(t)ỹ(t | t− 1),
where

K̄(t) = RxỹR
−1
ỹ = Px(t)C

T (CPx(t)C
T +R2)

−1.

We denote K(t) = AK̄(t) and so inserting all this into (41), gives finally the optimal
estimate in recursive form as

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)ỹ(t | t− 1), (42)

where we recall that ỹ(t | t − 1) = y(t) − Cx̂(t | t − 1). The initial condition for the
recursive equation (42) is recalled from our earlier assumption to be: x̂(t0 | t0 − 1) = m.
Note that here we can interpret the term K(t)ỹ(t | t− 1) as a correction term due to the
new measurement information y(t).

It remains to evaluate the covariance matrix Px(t) recursively. Equations (34) and
(42) give that

x̃(t+ 1) | t) = x(t+ 1)− x̂(t+ 1 | t)
= A[x(t)− x̃(t | t− 1)] + w(t)−K(t)ỹ(t | t− 1)
= Ax̃(t | t− 1) + w(t)−K(t)[Cx̃(t | t− 1) + v(t)]
= (A−K(t)C)x̃(t | t− 1) + w(t)−K(t)v(t).
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This gives that E[x̃(t + 1 | t)] = 0 as E[x̃(t | t − 1) = 0 (and as E[w(t)] = 0 and
E[v(t)] = 0). Hence

Px(t+ 1) = (A−K(t)C)Px(t)(A−K(t)C)T +R1 +K(t)R2K(t)T

as E[w(t)v(t)T ] = 0. We write the above relationship in the form

Px(t+1) = APx(t)A
T+K(T )(CPx(t)C

T+R2)K(t)
T−APx(t)CTK(t)T−K(t)CPx(t)AT+R1

and replace here the first K(t) term with our earlier expression for K(t) = AK̄(t) =
APx(t)C

T (CPx(t)C
T +R2)

−1. This gives

Px(t+ 1) = APx(t)A
T +APx(t)C

TK(t)T − APx(t)CTK(t)T −K(t)CPx(t)AT +R1
= APx(t)A

T −K(t)CPx(t)AT +R1.
Finally we insert here the expression defining K(t) to get

Px(t+ 1) = APx(t)A
T − APx(t)CT

¡
CPx(t)C

T +R2
¢−1

CPx(t)A
T +R1.

As these recursive equations for the optimal predictive estimate (due to Rudolf Kalman)
are so important, we summarize the obtained results:

Summary: Kalman filter — predictive case

The minimum mean square (MMS) estimate of x(t + 1) for the system (34)-(35) given
the information {y(t0), y(t0 + 1), . . . , y(t), u(t0), u(t0 + 1), . . . , u(t)} is the conditional ex-
pectation x̂(t+ 1 | t), which can be computed recursively according to the Kalman filter
equation

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)(y(t)− Cx̂(t | t− 1)) (43)

x̂(t0 | t0 − 1) = m, (44)

where m is the mean value of x(t0). The (Kalman filter) gain K(t) is given by

K(t) = APx(t)C
T
¡
CPx(t)C

T +R2
¢−1

,

where Px(t) is the covariance matrix of the estimation error. This is given recursively by
the Riccati equation

Px(t+ 1) = APx(t)A
T − APx(t)CT

¡
CPx(t)C

T +R2
¢−1

CPx(t)A
T +R1 (45)

with the initial value
Px(t0) = R0,

where R0 is the covariance matrix of x(t0).

Remark 5.2 Note that Px(t) does not depend on the observations {y(t0), . . . , y(t)} nor
on {u(t0), . . . , u(t)}. Hence Px(t) and the Kalman filter gain K(t) can be computed a
priori (off-line)!
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Remark 5.3 As the derivation of the Kalman filter above did not use time invariance
(constancy) of A, B and C, the result is also valid when (34)-(35) presents a time-varying
system

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t)

y(t) = C(t)x(t) + v(t)

with nonstationary noise w(t) and v(t) (having possibly time-varying covariance matrices
R1(t) and R2(t), respectively).

Equation (45) is a discrete Riccati equation. Under appropriate conditions the solution
Px(t) converges as t→∞. The matrix

Px = lim
t→∞

Px(t)

is then the stationary covariance matrix of the estimation error, and satisfies then the
stationary (or algebraic) discrete Riccati equation

Px = APxA
T −APxCT

¡
CPxC

T +R2
¢−1

CPxA
T +R1. (46)

The filter gain converges then to the value

K = lim
t→∞

K(t) = APxC
T
¡
CPxC

T +R2
¢−1

.

Equation (46) is a nonlinear matrix equation in Px.

From the result (33) and the derivation of the optimal filter for the state estimation
problem, it follows that if the disturbances in (34)-(35) are not normally distributed , the
filter (43)-(45) is still the optimal linear filter for the estimation of x(t+ 1) based on the
information {y(t0), . . . , y(t), u(t0), . . . , u(t)}.

Example 10 We consider the DARE — Discrete Algebraic Riccati Equation — in the
scalar case (the dimension of the state, the input and the output are all equal to 1). Then
(46) can be written as (using lowercase letters as symbols for the corresponding matrices
in (46))

px = apxa− apxc(cpxc + r2)−1cpxa+ r1.
This gives

(cpxc+ r2)(1− a2)px = (cpxc+ r2)r1 − a2p2xc2
and so ¡

(1− a2)c2 + a2c2¢ p2x + ¡(1− a2)r2 − c2r1¢ px − r1r2 = 0.
This can be written as

c2p2x +
¡
(1− a2)r2 − c2r1

¢
px − r1r2 = 0.
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This second-order equation in px can be solved to give

px =
− ((1− a2)r2 − c2r1)±

q
((1− a2)r2 − c2r1)2 + 4c2r1r2
2c2

This second-order equation has only one nonegative solution px ≥ 0 (we know that the
limiting covariance matrix Px must be a positive semidefinite, symmetric matrix (i.e.
Px ≥ 0) when it exists, as Px(t) is such a matrix for all t):

px =
− ((1− a2)r2 − c2r1) +

q
((1− a2)r2 − c2r1)2 + 4c2r1r2
2c2

This is the desired solution of the DARE.

Connection with Difference Equation Representation

In the stationary case (t→∞) (43) becomes

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +Ke(t)
y(t) = Cx̂(t | t− 1) + e(t),

where {e(t)} is a sequence of independent normally distributed vectors with covariance
matrix

Re = E[e(t)e(t)
T ] = CPxC

T +R2.

(Recall that ỹ(t | t− 1) = y(t)− Cx̂(t | t− 1) = Cx̃(t | t− 1) + v(t). Thus as x̃(t | t− 1)
approaches a stationary process with covariance matrix Px when t→∞ and as x̃(t | t−1)
is independent of v(t), it follows that ỹ(t | t − 1) approaches a stationary process {e(t)}
with covariance matrix CPxCT +R2.)
We can determine the transfer functions from u and e to y for the above stationary

form of the predictive Kalman filter in the usual manner. This results in

y(t) = Gyu(q
−1)u(t) +Gyee(t),

where q−1 is the backwards (time) shift operator, i.e. q−1u(t) = u(t − 1) and so on.
Alternatively, this can be written in difference equation form as

y(t)+A1y(t−1)+. . .+Any(t−n) = B0u(t−1)+. . .+Bn−1u(t−n)+e(t)+C1e(t−1)+Cne(t−n).

This form is called the ARMAX representation (ARMAX= autoregressive moving average
with an external input), where the y part is the AR part, the e part is the MA part and
the u part is the X part. This representation is often used in system identification as
system model structure.
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5.2 Generalizations — Correlated Disturbances and the Filtering
Form of the Kalman Filter

There are several important generalizations of the Kalman filter result that was presented
earlier. We take up two of them.

Case of Correlated Disturbances

Consider the state space system

x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t),

where {w(t)} and {v(t)} are sequences of mutually correlated normally distributed sto-
chastic vectors with zero mean values and the covariances

E[w(t)w(s)T ] = δt,sR1

E[v(t)v(s)T ] = δt,sR2

E[w(t)v(s)T ] = δt,sR12

The minimum mean square estimate x̂(t + 1 | t) = E[x(t + 1) | Vt] of x(t + 1) based on
the information Vt, is then given by

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)(y(t)− Cx̂(t | t− 1)),

where
K(t) =

¡
APx(t)C

T +R12
¢ ¡
CPx(t)C

T +R2
¢−1

and the covariance matrix Px(t) of the estimation error x̃(t | t− 1) = x(t)− x̂(t | t− 1) is
given by

Px(t+ 1) = APx(t)A
T − ¡APx(t)CT +R12¢ ¡CPx(t)CT +R2¢−1 ¡CPx(t)AT +RT12¢+R1.

(47)

This we see as follows. Note that earlier we obtained the predictive Kalman filter
result when R12 = 0. Comparing with the derivation of (39), we see that

x̂(t+ 1 | t) = AE[x(t) | Vt−1, u(t), ỹ(t | t− 1)] +Bu(t) + E[w(t) | Vt−1, u(t), ỹ(t | t− 1)].

(When R12 = 0 we had earlier that the conditional mean of w(t) is equal to E[w(t)] = 0.)
Now (using (27))

E[w(t) | Vt−1, u(t), ỹ(t | t− 1)] = E[w(t) | Vt−1] + E[w(t) | ỹ(t | t− 1)]− E[w(t)] =
E[w(t) | ỹ(t | t− 1)],

as E[w(t) | Vt−1] = E[w(t)] = 0. This equation is valid under the same assumptions as
used earlier for u(t). As w(t) and ỹ(t | t − 1) are jointly normally distributed, we can
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evaluate the above conditional mean as in (19). For this we need the covariance matrix
Rwỹ of w(t) and ỹ(t | t− 1). Now

Rwỹ = E[w(t)ỹ(t | t− 1)T ] = E[w(t)v(t)T ] = R12.

Hence by (19)

E[w(t) | ỹ(t | t− 1)] = E[w(t)] +R12R−1ỹ (ỹ(t | t− 1)−E[ỹ(t | t− 1)) =
R12

¡
CPx(t)C

T +R2
¢−1

ỹ(t | t− 1).

So the Kalman filter gain K(t) is modified to

K(t) =
¡
APx(t)C

T +R12
¢ ¡
CPx(t)C

T +R12
¢−1

and the recursive formula for the optimal estimate is then of the same form as earlier

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)ỹ(t | t− 1).

We still need to consider how Px(t) changes when R12 6= 0. Note that

x̃(t+ 1 | t) = (A−K(t)C)x̃(t | t− 1) + w(t)−K(t)v(t),

i.e. the prediction error satisfies here an equation of the same form as earlier. This gives
that

Px(t+1) = (A−K(t)C)Px(t)(A−K(t)C)T +R1+K(t)R2K(t)T −R12K(t)T −K(t)RT12.

This can be simplified to (47) using the expression for K(t).

Case of Filtering Form of the Kalman Filter

Often in applications, especially when the state estimate x̂ is used in feedback control, it
is important to consider the case when the optimal estimate of x(t) uses the measured
output at time t, i.e. y(t), too.
Consider the state space system (34)-(35). The optimal estimate x̂(t + 1 | t + 1) of

x(t+ 1) based on the information Vt+1 is given by the MMS estimate

x̂(t+ 1 | t+ 1) = E[x(t+ 1) | Vt+1].

We shall now assume that either 1) we know nothing else about {u(t)} other than its role
in (34)-(35) as a given, fixed sequence or 2) that it is generated so that in cases 1) and
2), it is true that

E[x(t+ 1) | Vt+1] = E[x(t+ 1 | Vt, y(t+ 1)].
We have

x̂(t+ 1 | t+ 1) = E[x(t+ 1) | Vt, y(t+ 1)] = E[x(t+ 1) | Vt, ỹ(t+ 1 | t)],
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where ỹ(t+1 | t) = y(t+1)−ŷ(t+1 | t). Now due to the properties of the optimal estimates,
we recall from earlier that Vt and ỹ(t + 1 | t) are independent normally distributed
stochastic variables. Hence we can apply equation (27) to compute

x̂(t+ 1 | t+ 1) = E[x(t+ 1) | Vt] + E[x(t+ 1) | ỹ(t+ 1 | t)]− E[x(t+ 1)] =
x̂(t+ 1 | t) + K̄(t+ 1)ỹ(t+ 1 | t),

where we have also used an earlier computation leading to (42) and

K̄(t+ 1) = Px(t+ 1 | t)CT
¡
CPx(t+ 1 | t)CT +R2

¢−1
.

Here Px(t + 1 | ·) denotes the covariance matrix of the estimation error for the optimal
estimate x̂(t+1 | ·) of x(t+1). (So Px(t+1 | t) denotes Px(t) from the predictive estimate
case and Px(t + 1 | t + 1) denotes the estimation error for x̂(t + 1 | t + 1) to estimate
x(t+ 1).)
Note that

x̂(t+ 1 | t) = E[x(t+ 1) | Vt] = AE[x(t) | Vt] +Bu(t) + E[w(t) | Vt] =
Ax̂(t | t) +Bu(t) + E[w(t)] = Ax̂(t | t) +Bu(t).

We still want to express Px(t+ 1 | t+ 1). Now

x̃(t+ 1 | t+ 1) = x(t+ 1)− x̂(t+ 1 | t+ 1)
= x(t+ 1)− x̂(t+ 1 | t)− K̄(t+ 1)ỹ(t+ 1 | t)
= x̃(t+ 1 | t)− K̄(t+ 1)ỹ(t+ 1 | t) =
= x̃(t+ 1 | t)− K̄(t+ 1) (Cx̃(t+ 1 | t) + v(t+ 1)) .

Hence

Px(t+ 1 | t+ 1) = (I − K̄(t+ 1)C)Px(t+ 1 | t)(I − K̄(t+ 1)C)T + K̄(t+ 1)R2K̄(t+ 1)T

and so

Px(t+ 1 | t+ 1) = Px(t+ 1 | t)− K̄(t+ 1)CPx(t+ 1 | t)− Px(t+ 1 | t)CT K̄(t+ 1)T +
K̄(t+ 1)CPx(t+ 1 | t)CT K̄(t+ 1)T + K̄(t+ 1)R2K̄(t+ 1)T

Here the sum of the last two terms can be written as

K̄(t+ 1)CPx(t+ 1 | t)CT K̄(t+ 1)T + K̄(t+ 1)R2K̄(t+ 1)T =
K̄(t+ 1)

¡
CPx(t+ 1 | t)CT +R2

¢
K̄(t+ 1)T = Px(t+ 1 | t)CT K̄(t+ 1)T ,

where we have used the defining expression for K̄(t+ 1). Therefore

Px(t+ 1 | t+ 1) = Px(t+ 1 | t)− K̄(t+ 1)CPx(t+ 1 | t) =
Px(t+ 1 | t)− Px(t+ 1 | t)CT

¡
CPx(t+ 1 | t)CT +R2

¢−1
CPx(t+ 1 | t).
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We see also that as

x̃(t+ 1 | t) = x(t+ 1)− x̂(t+ 1 | t) = A(x(t)− x̂(t | t)) + w(t),

it follows that
Px(t+ 1 | t) = APx(t | t)AT +R1.

We summarize these important equations.

Summary: Kalman filter — filtering case

The minimum mean square estimate of x(t+1) for the state space system (34)-(35), given
the information {y(t0), y(t0+1), . . . , y(t+1), u(t0), . . . , u(t)}, is the conditional expectation
x̂(t+1 | t+1) which can be computed recursively according to the Kalman filter equation

x̂(t+ 1 | t+ 1) = Ax̂(t | t) +Bu(t) + K̄(t+ 1) (y(t+ 1)− C(Ax̂(t | t) +Bu(t)) (48)

with the initial value x̂(t0 | t0) = m. Furthermore

K̄(t+ 1) = Px(t+ 1 | t)CT
¡
CPx(t+ 1 | t)CT +R2

¢−1
,

where
Px(t+ 1 | t) = APx(t | t)AT +R1

and

Px(t+ 1 | t+ 1) = Px(t+ 1 | t)− Px(t+ 1 | t)CT
¡
CPx(t+ 1 | t)CT +R2

¢−1
CPx(t+ 1 | t)

with the initial value Px(t0 | t0) = R0.

Let us now consider the stationary case (t →∞) of the filtering form of the Kalman
filter. Denote

Px,f = lim
t→∞

Px(t | t)
Px,p = lim

t→∞
Px(t | t− 1)

(Note that we have earlier denoted, in the context of the stationary case of the predictive
Kalman filter, Px,p as Px.)
Then

Px,p = APx,fA
T +R1

Px,f = Px,p − Px,pCT
¡
CPx,pC

T +R2
¢−1

CPx,p.

Denoting H = Px,pC
T
¡
CPx,pC

T +R2
¢−1

CPx,p, we see that

vTPx,fv = v
TPx,pv − vTHv ≤ vTPx,pvquadfor all v ∈ Rn
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as H is a symmetric, positive semidefinite matrix. Thus we can write compactly

Px,f ≤ Px,p,

i.e. the stationary covariance matrix of the estimation error for the filtering estimate of
x(t+1) is smaller than or equal to (in the precise sense as derived above), the stationary
covariance matrix of the estimation error for the predictive estimate of x(t + 1). (As of
course we would expect!)

Denote K̄ = limt→∞ K̄(t). The stationary form of (48) becomes then

x̂(t+ 1 | t+ 1) = Ax̂(t | t) +Bu(t) + K̄ (y(t+ 1)− C[Ax̂(t | t) +Bu(t)]) ,

where
K̄ = Px,pC

T
¡
CPx,pC

T +R2
¢−1

and Px,p = Px is given as the solution to the discrete algebraic Riccati equation (DARE)
(46).
Note that Px,p (and Px,f ) and K̄, the Kalman filter gain, can be computed off-line!

Example 11 We verify in the scalar scase the (matrix) inequality Px,f ≤ Px,p. (Lower
case letters are used.) By our earlier computations

px,f = px,p − px,pc(cpx,pc+ r2)−1cpx,p,

and so

px,f =

µ
1− px,pc

2

px,pc2 + r2

¶
px,p ≤ px,p.

Thus indeed, it holds that 0 ≤ pp,f ≤ px,p.

6 On Some Practical Issues in Kalman Filtering
We shall here discuss several things to take into account in state estimation and in Kalman
filtering in particular.

6.1 Unstable Systems

The steady-state predictive Kalman filter is of the form

x̂(t+ 1) = (A−KC)x̂(t) +Bu(t) +Ky(t)

for the state space model

x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)
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Denoting the prediction error as x̃(t) = x(t)− x̂(t), we get that
x̃(t+ 1) = (A−KC)x̃(t) + w(t)−Kv(t).

This would seem to indicate that as long as A−KC is a stable matrix (i.e. all eigenvalues
of the matrix are strictly less than one in magnitude), the estimation error dynamics is
stable — even if A is unstable (i.e. even if the state space system being estimated is an
unstable system).

However, in practice there would be a big problem! To see this consider that the data
{y(t)} is in reality generatated by the perturbed system

x(t+ 1) = A0x(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t),

whilst the predictor is still given as before (i.e. A is the system matrix used in the
predictor). So A0 is a perturbation of the matrix A in the predictor. Then

x̃(t+ 1) = x(t+ 1)− x̂(t+ 1) = A0x(t)−Ax̂(t) +KCx̂(t)−Ky(t) + w(t) =
(A0 − A)x(t) +A(x(t)− x̂(t)) +KC(x̂(t)− x(t))−Kv(t) + w(t) =

(A0 − A)x(t) + (A−KC)x̃(t) + w(t)−Kv(t), (49)

and soµ
x(t+ 1)
x̃(t+ 1)

¶
=

µ
A0 0

A0 − A A−KC
¶µ

x(t)
x̃(t)

¶
+

µ
B
0

¶
u(t) +

µ
w(t)

w(t)−Kv(t)
¶
.

If A0 and A are both unstable and A0 6= A, then clearly even if max1≤i,j≤n |a0ij − aij| is
small, it is expected that x̃(t) may become arbitrarily large when t grows (unstable error
dynamics)! (Here A0 = [a

0
ij ] and A = [aij].)

Example 12 Consider a scalar example. Take A0 = 2, A = 2− ², ² > 0, and A−KC =
0.5. Set u(t) ≡ 0, w(t) ≡ 0 and v(t) ≡ 0 (just for the sake of easy of illustration). Then
by (49) µ

x(t+ 1)
x̃(t+ 1)

¶
=

µ
2 0
² 0.5

¶µ
x(t)
x̃(t)

¶
.

Put x(0) = 1 and x̃(0) = 0. Then x(1) = 2, x(2) = 4 and x(k) = 2k for any k ≥ 1.
Clearly

x̃(k + 1) ≥ ² · 2k →∞ when k →∞
however small ² > 0 is!
Here we observe that the estimation error dynamics has zero robustness against per-

turbations in the system matrix, as the true system is unstable.

The zero robustness problem occurs when an unstable system has not been stabilized
by feedback. Assume now that

u(t) = −Fy(t)

40



is a stabilizing output feedback law, i.e. that both A − BFC and A0 − BFC are stable
matrices (these matrices have thus all their eigenvalues strictly inside the unit circle).
Then µ

x(t+ 1)
x̃(t+ 1)

¶
=

µ
A0 −BFC 0
A0 − A A−KC

¶µ
x(t)
x̃(t)

¶
+

µ
w(t)−BFv(t)
w(t)−Kv(t)

¶
and thus the zero robustness problem disappears (because if A0 − A is close to a zero
matrix then the above state space system is stable and so also the error dynamics is
stable — obviously this requires that A−KC is a stable matrix).
In linear quadratic gaussian (LQG) control the stabilizing feedback law is taken to be

of the form
u(t) = −Lx̂(t),

and if possible the state estimate x̂(t) should actually be taken to be the filtered estimate
x̂(t | t), not the predictive estimate x̂(t | t − 1) (the latter estimate gives a feedback law
that does not feed back the most recent measurement y(t)).

Note that although we used in the above analysis the predictive filter, the zero robustness
problem is also present for filters in the filtered form (48).

6.2 Numerical Issues

A full treatment of numerical issues is beyond the scope of the present course, but we
shall point out several issues of relevance in the implementation of Kalman filters and
recursive filters in general.

We shall mostly use here the predictive form of the Kalman filter in the discussion, but
similar observations hold also for the filtering form of the Kalman filter.

The most basic numerical issue applies already to the steady-state Kalman filter, which
does not involve any filter gain and error covariance matrix recursions. This steady-state
filter is of the recursive form

x̂(t+ 1) = AK x̂(t) +Ky(t).

(Note that we have dropped here the term Bu(t) as it has no relevance for our discussion
when u(t) is a known deterministic signal.)
We shall assume that the measured signal {y(t)} has been generated by some stable

stochastic state space system and that AK is a stable matrix. This would be a set of mild
assumptions, which are expected to be realistic in most applications of Kalman filtering
(especially for signal estimation purposes).

Let (for the sake of discussion) z denote the important signal (possibly vector-valued)
that we really need to estimate and let

z = Dx,
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so that the (optimal predictive) MMS estimate of z(t) is given by

ẑ(t) = Dx̂(t).

The complete filter equations are

x̂(t+ 1) = AK x̂(t) +Ky(t)

ẑ(t) = Dx̂(t).

Introduce the variable transformation ϕ(t) = Sx̂(t), where S is an invertible (square)
matrix. The matrix S presents a coordinate transformation resulting in

ϕ(t+ 1) =
¡
SAKS

−1¢ϕ(t) + (SK)y(t)
ẑ(t) = DS−1ϕ(t)

or

ϕ(t+ 1) = Tϕ(t) + Ly(t)

ẑ(t) = Rϕ(t),

where T = SAKS−1, L = SK, and R = DS−1.
The point we want to make here is that although T has the same eigenvalues as AK

in infinite precision arithmetics, there can be a huge difference in their eigenvalues and
other characteristics when the filter is implemented in finite accuracy floating point or
fixed point microprocessors, digital signal processors or microcontrollers!

The general non-steady-state predictive Kalman filter involves also filter gain updating
and estimation error covariance matrix updating. These quantities do not, however,
depend on the measurements {y(t)} and can therefore be computed off-line and stored in
some approximate function interpolation form to save memory requirements. In any case
this complicates the filter computations in comparison with the simple steady-state filter.
A practical issue is that the computed error covariance matrix Px(t) could lose its

symmetry and positive semidefiniteness properties due to error propagation in numerical
computations. Hence it is often recommended that in stead of Px(t), it is better to update
some stable matrix factors of a numerically robust factorization of the error covariance
matrix. This will unfortunately result in a more complicated algorithm.

6.3 Some References on Kalman filtering

We refer to the references given in the Introduction section of these lectures notes (Part
I — Kalman Filtering). The following additional information should be useful.

A good general reference on Kalman filtering is the classic book: K.J. Åström, Introduc-
tion to Stochastic Control Theory, Academic Press, 1970. This reference treats both the
discrete time and the continuous time case. The book by Torsten Söderström (Discrete-
time Stochastic Systems: Estimation & Control, Prentice Hall, 1994) is nicely written
and covers similar topics as the present lecture notes and more.
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Another nice reference is the following book: G.C. Goodwin and K.S. Sin, Adaptive
Filtering, Prediction and Control, Prentice-Hall, 1984.

A reference that treats many implementation and numerical issues as well as the nonlinear
case is the book: M.S. Grewal and A.P. Andrews, Kalman Filtering: Theory and Practice,
Prentice Hall, 1993.

Several popular techniques in recursive parameter estimation and in adaptive filtering can
be interpreted as Kalman filtering methods. Some of these connections are discussed in
the book: L. Ljung and T. Söderström, Theory and Practice of Recursive Identification,
The MIT Press, 1983.

Finally, a fairly recent article dealing with an interesting application of Kalman filtering
to navigation is as follows: J. Farrell and T. Givargis, Differential GPS reference station
algorithm — Design and analysis. IEEE Trans. Control Syst. Technology, vol. 8, no. 3,
pp. 519—531, May 2000.
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