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1 A Brief Introduction to Part II

This Part II of the lecture notes for course 7604120 is a continuation of Part I of the
lecture notes. Part II deals with Linear Quadratic Gaussian (LQG) control of stochastic
state space systems. The solution of optimal LQG control problems is closely associated
with optimal state estimation, i.e. with Kalman filtering, a topic that was studied in
detail in Part I of these lecture notes.

We do not repeat here the background material and historical remarks concerning LQG
control made in the Introduction of Part I of these lecture notes. Instead we start directly
with dynamic programming, a fundamental approach in optimization theory, which is
instrumental in the solution of LQG control problems.

2 Dynamic Programming

In this section we study dynamic programming and its application to stochastic optimiza-
tion problems.

2.1 Principle of Optimality and Bellman Equation

Dynamic programming is a mathematical technique for solving sequential decision and
optimization problems. It was developed by Richard Bellman and his associates at the
Rand Corporation in the 1950s and it is especially important in stochastic optimization
problems.

Dynamic programming is based on the principle of optimality allowing the solution of
sequential optimization/decision problems in a recursive manner. An optimal strategy or
an optimizer solving the optimization/decision problem is called an optimal policy.

Principle of Optimality: An optimal policy has the property that, whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy
with respect to the state resulting from the first decision.

Example 1 A positive quantity c is to be divided into n parts in such a way that the
product of the n parts is to be a maximum. Use recursion to obtain the optimal subdivi-
sion.

Solution: Let fn(c) denote the maximum attainable product as a function of c and n. If
we regard c as fixed, and let n vary over the positive integers, fn(c) becomes a function
of the integer variable n. Define f1(c) = c. For n = 2 it holds that

f2(c) = max
0≤y≤c

yf1(c− y) = max
0≤y≤c

y(c− y) = c2

4
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for y = c/2. (This we can check by noting that h(y) = y(c − y) and so h0(y) = c − 2y.
Clearly then h has a unique global maximum at y∗ = c/2 (0 ≤ y∗ ≤ c) and h(y∗) = c2/4.)
By optimal policy we mean the optimal subdivision, which is here

Optimal policy (c/2, c/2)

Optimal value f2(c) = c
2/4

Suppose that we have solved the problem (that is we know fn(c)) for n(≥ 2) and wish to
obtain the solution for n+ 1. (As we have solved the problem for n = 2, this would then
constitute an inductive or recursive solution of the problem for any n ≥ 2.)
Let the first of the n+ 1 parts be denoted as y. We have then c− y (as 0 ≤ y ≤ c) to

be divided into n further parts. The maximum value fn+1(c) is given by

fn+1(c) = max
0≤y≤c

yfn(c− y),

where we have used the fact that the Principle of Optimality can be used.
Since we know fn by assumption, the quantity above being maximized is a known

function of the single variable y. Denoting the maximizing y value as yn+1(c), we have

Optimal value fn+1(c) = yn+1(c)fn(c− yn+1(c)) (1)

Optimal strategy yn+1(c) and optimal n-part strategy for c− yn+1(c) (2)

The solution for n = 2 was given earlier. For n = 3 we get that

f3(c) = max
0≤y≤c

y(c− y)2/4 = c

3
× f2(2c/3) = c3

33
,

as h(y) = y(c−y)2 gives h0(y) = (c−y)2−2y(c−y) = 0. This equation has two roots and
the root y = c corresponds to a global minimum of h on [0, c] and so the only remaining
root c−y−2y = 0, i.e. y = c/3, corresponds to a global maximum of h on[0, c] (the other
interval end point y = 0 corresponds also to a global minimum of h on [0, c]).
Thus for n = 3, it holds that

Optimal value f3(c) = c
3/33

Optimal policy (c/3, c/3, c/3)

The cases n = 2 and n = 3 as a hint, we conjecture that for general n = 2, 3, 4, . . ., it
holds that

Optimal policy (c/n, c/n, . . . , c/n)

Optimal value fn(c) = (c/n)
n
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We establish this result by induction. Assume that the optimal policy is as claimed for
n. Then from (1)

fn+1(c) = max
0≤y≤c

y

µ
c− y
n

¶n
.

Consider the auxiliary function h(y) = y(c− y)n on [0, c]. Now h0(y) = (c− y)n − ny(c−
y)n−1 and so

h0(y) = (c− y − ny)(c− y)n−1 = (c− (n+ 1)y)(c− y)n−1.

The equation h0(y) = 0 has the roots y = c/(n + 1) and y = c (the latter is a multiple
root). The root y = c and the other end point y = 0 of the interval [0, c] correspond to
a global minimum of h on [0, c]. The root y = c/(n + 1) corresponds clearly to a global
maximum of h on [0, c]. Hence yn+1(c) = c/(n+ 1) is the optimal value of y.

Optimal policy (c/(n+ 1), c/(n+ 1), . . . , c/(n+ 1))

Optimal value fn+1(c) = [c/(n+ 1)]
n+1

So the result is valid for n+ 1 if it is valid for n. As we know that the result is valid for
n = 2, it then follows that it is valid for all n = 2, 3, 4, . . .. This completes the induction
proof.

Consider a function f(u1, u2) of two real variables u1 and u2. Let us assume that the
minimum of f is obtained at u1 = uo1, u2 = u

o
2, i.e.

min
u1,u2

f(u1, u2) = f(u
o
1, u

o
2).

Then
min
u1
{min
u2
f(u1, u2)} ≤ min

u1
f(u1, u

o
2) ≤ f(uo1, uo2).

Hence it holds that
min
u1,u2

f(u1, u2) = min
u1
{min
u2
f(u1, u2)}.

Note that minu2 f(u1, u2) is a function of u1 only, so that we can write

min
u1,u2

f(u1, u2) = min
u1
h(u1), (3)

where h(u1) = minu2 f(u1, u2).
Now consider the minimization of

f(x1, u1, x2, u2) = f1(x1, u1) + f2(x2, u2)

with respect to the decision variables u1 and u2 (u1 and u2 being the decision variables of
the first stage and the second stage, respectively, of a two-stage decision problem). Here
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the state variables x1 and x2 are such that the state x2 of the second stage depends on u1
and x1, i.e.

x2 = g(x1, u1),

where g is a given function. By (3) the minimum of f , with respect to u1 and u2, under
the above constraint can be written as

minu1,u2 f(x1, u1, x2, u2) = minu1,u2 (f1(x1, u1) + f2(x2, u2)) =

minu1 (f1(x1, u1) + minu2 f2(g(x1, u1), u2)) =

minu1 [f1(x1, u1) + V (g(x1, u1))] ,

where we have introduced the notation

V (x2) = min
u2
f2(x2, u2).

More generally, we consider a sequential decision process consisting of N stages with the
decision variables u1, u2, . . ., uN , and the loss function

f(x1, u1, . . . , xN , uN ) = f1(x1, u1) + . . .+ fN (xN , uN),

where the state variables x1,. . .,xN are related according to

xk+1 = gk(xk, uk), k = 1, . . . , N − 1.
Here gk, k = 1, . . . , N − 1, are given functions.
We obtain using (3) repeatedly

minu1,...,uN f(x1, u1, . . . , xN , uN) =

minu1,...,uN−1 [f1(x1, u1) + . . .+ fN−1(xN−1, uN−1) + minuN fN(gN−1(xN−1, uN−1), uN )] =

minu1 [f1(x1, u1) + minu2[f2(g1(x1, u1), u2) + minu3 [f3(g2(x2, u2), u3) + . . .+

minuN−1[fN−1(gN−2(xN−2, uN−2), uN−1) + minuN fN(gN−1(xN−1, uN−1), uN)] . . .], (4)

where xk−1 does not depend on uk, k = 2, . . . , N . The above optimization problems are
to be performed starting from the decision variable uN and then proceeding recursively
backwards to u1. That is, the above procedure can be expressed recursively as

min
u1,u2,...,uN

f(x1, u1, . . . , xN , uN) = V1(x1),

where V1(x1) is given by the recursive functional equation

Vk(xk) = min
uk
[fk(xk, uk) + Vk+1(gk(xk, uk))], k = N − 1, . . . , 1 (5)

with the initial condition
VN (xN) = min

uN
fN(xN , uN).
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Remark 2.1 Comparing (4) and (5) it is seen that Vk(xk) is the minimum of the contri-
bution to the total loss function f from the stages k, . . .,N , as a function of the state xk
at stage k, i.e.

Vk(xk) = min
uk,...,uN

[fk(xk, uk) + fk+1(xk+1, uk+1) + . . .+ fN(xN , uN)]

subject to the state constraints

xk+1 = gk(xk, uk), k = 1, . . . , N − 1.

The functional equation (5) (with the associated initial condition) is called the Bell-
man equation — it is the basis for dynamic programming in which the sequential
optimization problem minu1,...,uN f(x1, u1, . . . , xN , uN) subject to the state constraints
xk+1 = gk(xk, uk), k = 1, . . . , N − 1, is solved as a sequence of smaller subproblems
of the form (5). These subproblems also define the optimal strategy u∗k = u∗k(xk),
k = N,N − 1, . . . , 1.

2.2 Stochastic Sequential Optimization Problems

Whilst deterministic sequential optimization problems can often be solved by for example
direct optimization, stochastic problems often can only be solved with dynamic program-
ming. Why?

The reason is that the information that is available at the various stages when selecting
u1, . . ., uN (i.e. when determining the decision policy or the control strategy) is different
at each stage: when uk+1 is determined, there are in general new measurements of sto-
chastic variables available and one stage earlier only the conditional distributions of these
variables were available when selecting uk.

Before proceding we need some auxiliary results.

Auxiliary Results

Let X and Y be stochastic variables, and let u be a decision variable (control signal)
which is to be chosen so that the loss function

E[`(X, Y, u)]

is minimized. (Here E denotes the expectation (or mean value) over the random variables
X and Y , and `(·, ·, ·) is a given function.) The decision variable u is allowed to be a
function of y only (an observation of the stochastic variable Y ). That is, the minimization
problem can be formulated as

min
u=u(Y )

E[`(X, Y, u)].
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It is convenient to introduce the simplified notation E[· | y] to denote the conditional
expectation E[· | Y = y].

Result A

Assume that the function f(y, u) = E[`(X, y, u) | y] for every y has a unique minimum
with respect to u, and let this minimum be achieved for uo(y). Then

min
u(Y )

E[`(X, Y, u(Y ))] = E[`(X,Y, uo(Y ))] = EY [min
u
E[`(X, y, u) | y]]. (6)

This we see as follows. We should first note that f(y, u) is a function of y and u only. It
follows that the explicit dependence of u on y can be left out in the minimization, i.e.

min
u(y)

E[`(X, y, u) | y] = min
u
E[`(X, y, u) | y].

For every u = u(y) we have that

f(y, u) ≥ f(y, uo(y)) = min
u
f(y, u),

so that we have for every u = u(y) the useful relationships

E[`(X,Y, u)] = EY [E[`(X,Y, u) | y]]
= EY [f(Y, u)]

≥ EY [f(Y, u
o(Y ))], (7)

= EY [E[`(X, y, u
o(y)) | y]]

= E[`(X,Y, uo(Y ))] (8)

= EY [min
u
f(y, u)],

= EY [min
u
E[`(X, y, u) | y]]. (9)

Here the first equality follows by the law of total probability for expectations, see Part I of
these lecture notes and the second by the definition of f(y, u). The inequality (7) follows
by the definition of uo(y). The equality (8) follows by the total law of probability for
expectations and the quantity on the right hand side of the equality after (8) is equal to
the right hand side of the inequality (7). Equality (9) follows by the definition of f(y, u).

Hence by (8) and (9)

min
u(Y )

E[`(X, Y, u(Y ))] ≥ E[`(X, Y, uo(Y ))] = EY [min
u
E[`(X, y, u) | y]].

On the other hand it clearly holds that

E[`(X,Y, uo(Y ))] ≥ min
u(Y )

E[`(X, Y, u(Y ))]
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(actually equality holds here) and thus

min
u(Y )

E[`(X, Y, u(Y ))] = EY [min
u
E[`(X, y, u) | y]].

Thus we have proved the validity of (6).

When u is allowed to be a function of x (an observation of the stochastic variable X) as
well, we obtain analogously to Result A:

Result B

Assume that the function `(x, y, u) has a unique minimum for every (x, y) with respect
to u, and let this minimum be attained for uo(x, y). Then

min
u(X,Y )

E[`(X, Y, u(X,Y ))] = E[`(X, Y, uo(X,Y ))] = E[ min
u=u(X,Y )

`(X, Y, u)]. (10)

Actually, we can compute as in Result A to get

min
u(X,Y )

E[`(X, Y, u(X, Y ))] = EX,Y [min
u
`(x, y, u) | x, y] = E[ min

u=u(X,Y )
`(X,Y, u)].

Let us now return back to stochastic sequential optimization problems. Consider first
the problem of minimization of the function E[`(X1, X2, u1, u2)], where X1 and X2 are
stochastic variables and

`(X1, X2, u1, u2) = `1(X1, u1) + `2(X2, u2).

The vector x1 (an observation of the stochastic variable X1) represents the information
available at the first stage, and u1 is allowed to be a function of this information only.
The vector x2 (an observation of the stochastic variable X2) represents the information
available at the second stage, and u2 is allowed to depend on this information only.
Note that in contrast to the deterministic case, where x2 is available at stage 2 for u2

via the relationship x2 = g1(x1, u1), in the stochastic case only the conditional distribution
of X2 given x1 and u1 is available at stage 2 for u2, for example via a relationship of the
form x2 = g(x1, u1, w), where w is a stochastic variable.

We get

minu1(X1),u2(X2)E[`(X1, X2, u1, u2)] = minu1(X1){minu(X2)E[`(X1, X2, u1, u2)]} =
minu(X1){E[`1(X1, u1)] + minu2(X2)E[`2(X2, u2)]}

since u2 does not affect `1(X1, u1). Here we have used the notation u1 = u1(X1) and
u2 = u2(X2). We use now result B (10) to get finally that

min
u1(X1),u2(X2)

E[`(X1, X2, u1, u2)] = min
u1(X1)

{E[`1(X1, u1)] + E[min
u2
`2(X2, u2)]}.
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Introduce the function
V (x2) = min

u2
`2(x2, u2).

Then we can write

minu1(X1),u2(X2)E[`(X1, X2, u1, u2)] = minu1(X1){E[`1(X1, u1) + V (X2)]} =
EX1{minu1 [`1(x1, u1) + E[V (X2) | x1]]} =
EX1{minu1[`1(x1, u1) + E[V (X2) | x1, u1]]} (11)

To derive the second equality we have used (10) and the fact that E[`1(x1, u1) | x1] =
`1(x1, u1). Note that we have wanted to stress in (11) that the latter term is a function
of x1 as well as of u1 by writing E[V (X2) | x1, u1].
The result (11) can be generalized to the minimization of

E[`1(X1, u1) + `2(X2, u2) + . . .+ `N(XN , uN)], (12)

where xk (an observation of the stochastic variable Xk) is the available information for uk
at stage k, at which only the conditional distributions of Xk+1, . . ., XN , are known, for
example via relationships of the form xi+1 = gi(xi, ui, wi), i = k, . . . ,N − 1, where wi are
stochastic variables.
We obtain

minu1(X1),...,uN (XN )E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1) + `N (XN , uN)] =

minu1(X1),...,uN−1(XN−1){E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1)] + E[minuN `N(XN , uN)]}
= minu1(X1),...,uN−1(XN−1){E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1) + VN(XN)]},

where
VN(xN) = min

uN
`N(xN , uN).

Here we have used the previously derived results for the two-stage situation.
Repeating the above steps with stage N − 1 gives

minu1(X1),...,uN (XN )E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1) + `N(XN , uN)] =

minu1(X1),...,uN−2(XN−2){E[`1(X1, u1) + . . .+ `N−2(XN−2, uN−2)]
+minuN−1(XN−1)E[`N−1(XN−1, uN−1) + VN(XN )]} (13)

In analogy with (11) we get

minuN−1(XN−1)E[`N−1(XN−1, uN−1) + +VN(XN )] =

E{minuN−1 [`N−1(xN−1, uN−1) + E[VN(XN) | xN−1, uN−1]]} =
E[VN−1(XN−1)], (14)
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where we have introduced the notation

VN−1(XN−1) = min
uN−1

[`N−1(xN−1, uN−1) + E[VN(XN) | xN−1, uN−1]].

Inserting (14) into (13) gives

minu1(X1),...,uN (XN )E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1) + `N(XN , uN)] =

minu1(X1),...,uN−2(XN−2){E[`1(X1, u1) + . . .+ `N−2(XN−2, uN−2)] + VN−1(XN−1)]}

Repeating this procedure for uN−2, . . ., u1, gives

min
u1(X1),...,uN (XN )

E[`1(X1, u1) + . . .+ `N−1(XN−1, uN−1) + `N(XN , uN)] = E[V1(X1)], (15)

where the function V1(x1) is obtained using functions Vk(xk) which are determined recur-
sively from the functional equation

Vk(xk) = min{`k(xk, uk) + E[Vk+1(Xk+1) | xk, uk]}, k = N − 1, . . . , 1 (16)

with the initial condition
VN(xN) = min

uN
`N(xN , uN). (17)

These are the Bellman equations for the stochastic dynamic programming problem.

Note that from the construction of the functions Vk(xk), it follows that Vk(xk) is the
expected minimum of the contribution of the loss function (12) from stages k, . . ., N ,
given the information xk available at stage k, i.e.

Vk(xk) = min
uk(Xk),...,uN (XN )

E[`k(Xk, uk) + . . .+ `N(XN , uN) | xk, uk], k = N,N − 1, . . . , 1.

2.3 Incomplete State Information

Let us now generalize the solution (15)-(16) to the case when xk is not available at stage
k, and thus uk is restricted to be a function of the information yk (an observation of the
stochastic variable Yk). Hence only the conditional distribution of Xk given yk is known.

For example, information about Xk may be given via the relationships

xk+1 = gk(xk, uk, wk)

yk = hk(xk, vk),

where wk and vk are stochastic variables and k = 1, . . . ,N − 1.
First consider a two-stage problem with the loss function

E[`(X1, Y1, X2, Y2, u1, u2)] = E[`1(X1, Y1, u1) + `2(X2, Y2, u2)]
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which is to be minimized with respect to u1 = u1(y1) (stage 1) and u2 = u2(y2) (stage 2).
At stage 1, y1 and the conditional distributions of X1 and X2 given y1, u1 are known. For
example, we may have x2 = g(x1, u1, w), y1 = h1(x1, v1) (and also y2 = h2(x2, v2)). We
obtain

minu1(Y1),u2(Y2)E[`(X1, Y1, X2, Y2, u1, u2)] =

minu1(Y1){minu2(Y2)E[`(X1, Y1, X2, Y2, u1, u2)]} =
minu1(Y1){E[`1(X1, Y1, u1)] + minu2(Y2)E[`2(X2, Y2, u2)]} =
minu1(Y1){E[`1(X1, Y1, u1)] + E[minu2 E[`2(X2, y2, u2) | y2]]},

where the second equality follows since u2 does not affect `1(X1, Y1, u1) and the last equal-
ity follows from (10) (see Result B). (Here in the last expression, the outer expectation
operation E is with respect to the stochastic variable Y2.)
Introduce the function

V (y2) = min
u2
E[`2(X2, y2, u2) | y2].

(Note that here the expectation is with respect to (w.r.t.) the distribution of X2, and
NOT w.r.t. the distribution of Y2.) Then

minu1(Y1),u2(Y2)E[`(X1, Y1, X2, Y2, u1, u2)] =

minu1(Y1)E[`1(X1, Y1, u1) + V (Y2)] =

E{minu1 E[`1(X1, y1, u1) + V (Y2) | y1]} =
E{minu1 E[`1(X1, y1, u1) + V (Y2) | y1, u1]}

where we have wanted to stress (with the notation used) that Y2 (and hence V (Y2)) is a
function of u1, too. (For example, as in x2 = g(x1, u1, w), y2 = h2(x2, v2).)

This procedure generalizes to the multistage loss function

E[`1(X1, Y1, u1) + . . .+ `N(XN , YN , uN)].

In analogy with the derivation of (15)-(17) we have (sic!)

min
u1(Y1),...,uN (YN )

E[`1(X1, Y1, u1) + . . .+ `N (XN , YN , uN)] = E[V1(Y1)], (18)

where the function V1(y1) is obtained from the functions Vk(yk), which are given by the
recursive equation

Vk(yk) = min
uk
E[`k(Xk, yk, uk) + Vk+1(Yk+1) | yk, uk], k = N − 1, . . . , 1 (19)

with the initial condition

VN(yN) = min
uN
E[`N(XN , yN , uN ) | yN ]. (20)
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Note also that

Vk(yk) = min
uk(Yk),...,uN (YN )

E[`k(Xk, yk, uk) + . . .+ `N(XN , YN , uN) | yk, uk].

(See also the end of the previous subsection.)

3 The Linear Quadratic Gaussian Control Problem

In this section we shall study the Linear Quadratic Gaussian (LQG) control problem,
whose solution is based on stochastic dynamic programming (SDP). The solution of the
LQG control problem is one of the most celebrated results in the control and systems
field. (There are actually several LQG control problems depending on the information
available for computing the control law.)

3.1 Statement of the LQG Control Problem

We shall consider linear state space systems corrupted with normally distributed distur-
bances as in Part I of these lectures. For convenience we shall reproduce the state space
equations below.
Thus we consider the state space system

x(t+ 1) = Ax(t) +Bu(t) + w(t) (21)

y(t) = Cx(t) + v(t) (22)

where {w(t)} and {v(t)} are sequences of independent normally distributed vectors (sto-
chastic variables) with zero mean values and the covariance matrices

E[w(t)w(s)T ] = R1δt,s

E[v(t)v(s)T ] = R2δt,s (23)

E[w(t)v(s)T ] = 0

where δt,s = 1 for t = s and δt,s = 0 for t 6= s (δt,s is the so-called Kronecker delta).
It is assumed that the initial state x(t0) is normally distributed with mean value m and
covariance matrix R0, and that the initial state is independent of {w(t)} and {v(t)}.
As control criterion we take the scalar quadratic loss function

JN ≡ E[x(N)TQ0x(N) +
N−1X
t=t0

{x(t)TQ1x(t) + u(t)TQ2u(t)}], (24)

where N > t0 and Q0, Q1 and Q2 are symmetric and positive definite or (positive)
semidefinite matrices (of appropriate dimensions).

The control problem can be stated as follows.
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Problem 1 Find an admissible control strategy for the system (21), (22), (23) for which
the loss function (24) is minimized.

An admissible control strategy is such that u(t) is a function of the information available
at time instant t only.

We will consider two cases:

• Complete state information, that is, the whole state vector x(t) is assumed known
at time instant t.

• Incomplete state information, that is, either the information I1(t) = {y(t−1), u(t−
1), y(t − 2), u(t − 2), . . .} or the information I0(t) = {y(t), y(t − 1), u(t − 1), y(t −
2), u(t − 2), . . .} is assumed to be available to compute u(t). Obviously we should
use I0(t) rather than I1(t) whenever possible when computing u(t) (in any particular
application).

3.2 Solution of the LQG Problem: Complete State Information

We solve here Problem 1 when u(t) is a function of the state vector x(t).

The loss function (24) can be written as

JN = E[`(x(N)) +
N−1X
t=t0

`t(x(t), u(t))],

where

`t(x(t), u(t)) = x(t)TQ1x(t) + u(t)
TQ2u(t), t = t0, . . . , N − 1

`N(x(N)) = x(N)TQ0x(N).

The control problem has now been written in a form suitable for stochastic dynamic
programming (SDP) with complete state information. That is, we shall use the recursive
SDP procedure (15),(16), (17). This gives the solution to Problem 1 with complete (full)
state information in the form

min
u(t0),...,u(N−1)

JN = E[Vt0(x(t0))], (25)

where (for t = N − 1, . . . , t0)

Vt(x(t)) = min
u(t)
{x(t)TQ1x(t) + u(t)TQ2u(t) + E[Vt+1(x(t+ 1)) | x(t), u(t)]} (26)

with the initial condition

VN (x(N)) = `N (x(N)) = x(N)
TQ0x(N). (27)
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We shall next solve the functional Bellman equation (26). For this we use an induction
argument showing that the solution of (26) has the form

Vt(x(t)) = x(t)
TS(t)x(t) + s(t), (28)

where S(t) is a symmetric, positive definite or semidefinite matrix.

We start by noting that clearly (28) holds for t = N with S(N) = Q0 and s(N) = 0,
compare (27).

We shall next show that if (28) holds for t + 1, then it will also hold for t. This then
implies that (28) holds for t = N,N − 1, . . . , t0.
Thus we put

Vt+1(x(t+ 1)) = x(t+ 1)
TS(t+ 1)x(t+ 1) + s(t+ 1).

By (26) we need to evaluate the conditional mean E[Vt+1(x(t + 1)) | x(t), u(t)]. Recall
(21)

x(t+ 1) = Ax(t) +Bu(t) + w(t),

so that x(t+ 1) given x(t) and u(t), is normally distributed with mean value

E[x(t+ 1) | x(t), u(t)] = Ax(t) +Bu(t)

and the covariance matrix

E[{x(t+1)−(Ax(t)−Bu(t))}{x(t+1)−(Ax(t)+Bu(t))}T | x(t), u(t)] = E[w(t)w(t)T ] = R1.

To proceed we need the following auxiliary result.

Result: Let x be normally distributed with mean value m and covariance matrix R, and
let S be a given (square) matrix (of the same dimensions as R). Then

E[xTSx] = mTSm+ trSR (29)

(Recall from part I that tr(·) denotes the trace of a square matrix, i.e. the sum of the
diagonal elements of the square matrix.) This we see as follows. We compute

E[xTSx] = E[(x−m)TS(x−m)] + E[mTSx] + E[xTSm]− E[mTSm]

= E[(x−m)TS(x−m)] +mTSm,

as E[x] = m. Thus

E[xTSx] = E[tr((x−m)TS(x−m))] +mTSm

= E[tr(S(x−m)(x−m)T )] +mTSm

= tr(SE[(x−m)(x−m)T ]) +mTSm

= trSR +mTSm.
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(Here we have used the equality trUV = trV U valid for any dimension compatible
matrices U and V .)
The result (29) now gives that

E[Vt+1(x(t+ 1)) | x(t), u(t)] = E[x(t+ 1)TS(t+ 1)x(t+ 1) + s(t+ 1) | x(t), u(t)] =
(Ax(t) +Bu(t))TS(t+ 1)(A(x(t) +Bu(t)) + trR1S(t+ 1) + s(t+ 1).

Inserting this into the Bellman equation (26) gives

Vt(x(t)) = minu(t){x(t)TQ1x(t) + u(t)TQ2u(t) +
(Ax(t) +Bu(t))TS(t+ 1)(A(x(t) +Bu(t)) + trR1S(t+ 1) + s(t+ 1)} =

minu(t){u(t)T (BTS(t+ 1)B +Q2)u(t) + u(t)TBTS(t+ 1)Ax(t) +
x(t)TATS(t+ 1)Bu(t)}+

x(t)T (ATS(t+ 1)A+Q1)x(t) + trR1S(t+ 1) + s(t+ 1), (30)

where we have moved all terms that do not depend on u(t) outside the minimization
operation with respect to u(t). Completing the squares according to the identity (with
MT =M)

uTMu+ uTNx+ xTNTu =

(Mu+Nx)TM−1(Mu+Nx)− xTNTM−1Nx

gives

Vt(x(t)) = minu(t){[(BTS(t+ 1)B +Q2)u(t) +BTS(t+ 1)Ax(t)]T (BTS(t+ 1) +Q2)−1 ×
[(BTS(t+ 1)B +Q2)u(t) +B

TS(t+ 1)Ax(t)]

−x(t)TATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)Ax(t) +
x(t)T (ATS(t+ 1)A+Q1)x(t) + trR1S(t+ 1) + s(t+ 1)},

where we have assumed that the square matrix (BTS(t+ 1)B +Q2) is invertible.
The solution of this minimization problem is now seen to be obtained for the u(t)

satisfying
(BTS(t+ 1)B +Q2)u(t) +B

TS(t+ 1)Ax(t) = 0.

(The first term in the expression being minimized is the only term that depends on u(t)
and this first term is nonnegative for any u(t), so the best we can do is to make this term
equal to zero.) This gives the optimal control strategy as

u(t) = −(BTS(t+ 1)B +Q2)−1BTS(t+ 1)Ax(t) (31)

(Thus the optimal control strategy is a linear control law feeding back the state x(t).)
This gives

Vt(x(t)) = −x(t)TATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)Ax(t) +
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x(t)T (ATS(t+ 1)A+Q1)x(t) + trR1S(t+ 1) + s(t+ 1) =

x(t)T [ATS(t+ 1)A− ATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)A+Q1]x(t) +
trR1S(t+ 1) + s(t+ 1).

Thus Vt(x(t)) is of the form (28) with

S(t) = ATS(t+ 1)A− ATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)A+Q1
s(t) = s(t+ 1) + trR1S(t+ 1)

We still need to verify that S(t) is at least positive semidefinite (it is symmetric by the
above expression). It is convenient to introduce the feedback gain matrix L(t) as

L(t) = (BTS(t+ 1)B +Q2)
−1BTS(t+ 1)A.

(Thus the optimal control strategy is u(t) = −L(t)x(t).) Inserting this into the obtained
expression for S(t), we can write

S(t) = (A−BL(t))TS(t+ 1)(A−BL(t)) +
L(t)TBTS(t+ 1)A− L(t)TBTS(t+ 1)BL(t) +Q1

= (A−BL(t))TS(t+ 1)(A−BL(t)) + L(t)TBTS(t+ 1)A
−L(t)T (BTS(t+ 1)B +Q2)L(t) + L(t)TQ2L(t) +Q1

= (A−BL(t))TS(t+ 1)(A−BL(t)) + L(t)TBTS(t+ 1)A− L(t)TBTS(t+ 1)A+
L(t)TQ2L(t) +Q1

= (A−BL(t))TS(t+ 1)(A−BL(t)) + L(t)TQ2L(t) +Q1.

Hence
zTS(t)z = dTS(t+ 1)d+ hTQ2h+ z

TQ1z

with d = (A − BL(t))z and h = L(t)z. It follows that zTS(t)z ≥ 0 for any vector z
as S(t + 1), Q2 and Q1 are (symmetric) positive semidefinite matrices by assumption.
Thus S(t) is (symmetric) positive semidefinite (at least; it may be positive definite). This
completes the induction proof of the claimed solution (28) to the LQG control problem
with complete state information.

Solution to Problem 1 with Complete State Information — Summary

Let an admissible control strategy be such that u(t) is a function of x(t). The loss function
(24) is then minimized by the control strategy

u(t) = −L(t)x(t), (32)

where
L(t) = (BTS(t+ 1)B +Q2)

−1BTS(t+ 1)A (33)
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and S(t) is given by the recursive equation

S(t) = ATS(t+ 1)A− ATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)A+Q1 (34)

for t = N − 1, . . . , t0. The initial condition for (34) is

S(N) = Q0.

If the initial state x(t0) has mean value m and covariance matrix R0, then the minimum
of the loss function (24), or equivalently the minimum value in (25), is given by

min
u(t0),...,u(N−1)

JN = E[Vt0(x(t0))]

= E[x(t0)
TS(t0)x(t0) + s(t0)]

= mTS(t0)m+ trS(t0)R0 + s(t0)

= mTS(t0)m+ trS(t0)R0 +
N−1X
t=t0

trS(t+ 1)R1,

where the last equality follows by the earlier obtained recursive expression for s(t) as
s(N) = 0.

Remark 3.1 Note that the matrix equation (34) is called a Riccati equation. It is dual
to the Riccati equation for the prediction error covariance matrix in Kalman filtering, see
part I of these lecture notes.

Remark 3.2 As N − t → ∞ (for example when N → ∞ or t0 → −∞), (34) converges
under certain (rather mild) conditions to the stationary (or algebraic) Riccati equation

S = ATSA− ATSB(BTSB +Q2)−1BTSA+Q1

or
S = (A−BL)TS(A−BL) + LTQ2L+Q1,

where S = limt→−∞ S(t) and

L = lim
t→−∞

L(t) = (BTSB +Q2)
−1BTSA.

The stationary control law
u(t) = −Lx(t)

then minimizes the stationary loss function

J = lim
N→∞

E

"
1

N

N−1X
t=0

¡
x(t)TQ1x(t) + u(t)

TQ2u(t)
¢#
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(that is, the average loss per step). The minimum value of the stationary loss is

minu(t) J = limN→∞minu(t) 1N JN =

limN→∞ 1
N

PN−1
t=0 trS(t+ 1)R1 = trSR1.

(We have denoted t0 = 0.)

Remark 3.3 Note that the auxiliary result (29) holds for any probability distribution
with finite mean and covariance matrix. We therefore do not actually need the normality
assumption for the (process) noise {w(t)} for the result (32)-(34) to hold. It suffices that
the disturbance {w(t)} is white noise. (x(t) must be independent of w(t) — this is the
essential assumption needed. Note that knowledge of x(t), x(t− 1), . . ., u(t− 1), u(t− 2),
. . ., allows one to determine w(t−1), w(t−2), . . . : w(t−1) = x(t)−Ax(t−1)−Bu(t−1);
w(t− 2) = x(t− 1)−Ax(t− 2)−Bu(t− 2); and so on. So if {w(t)} would not be white
noise then x(t) would contain information about w(t) —> we must assume {w(t)} to be
white noise — standard assumption for state space models!)

Remark 3.4 Note that the control strategy (32)-(34) does not depend on the covariance
matrix R1 (of w(t)). In fact the control law (32)-(34) is optimal also in the deterministic
case, when R1 = 0 and R0 = 0. That is, it is optimal for the deterministic initial value
problem defined by

x(t+ 1) = Ax(t) +Bu(t), x(t0) = m = given,

with the quadratic loss function

JN = x(N)
TQ0x(N) +

N−1X
t=t0

£
x(t)TQ1x(t) + u(t)

TQ2u(t)
¤
.

Therefore the same computer aided control system design (CACSD) software can be used
to solve both stochastic and deterministic linear quadratic (LQ) control problems.

3.3 Solution of the LQG Problem: Incomplete State Informa-
tion

We solve here Problem 1 when the state vector x(t) need not be available for the computa-
tion of u(t), and instead there are corrupted measurements of some linear combinations of
the state vector at disposal. There are two such cases of interest to us here corresponding
to the information I1(t) and I0(t), respectively (see the discussion after the statement of
Problem 1).

Let us now solve the optimal control problem when the information

I1(t) = [y(t0)
T , u(t0)

T , . . . , y(t− 1)T , u(t− 1)T ]T
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is available for the computation of u(t), i.e. when u(t) is a function of I1(t). (Note that
in Part I of these lecture notes, we have denoted the information state I1(t) as Vt−1, but
the latter notation is here reserved to a quantity in the Bellman equation.)
In analogy with (25),(26) and (27) we obtain, using (18),(19) and (20) (with the

substitutions k → t, xk → x(t) and yk → I1(t)):

min
u(t0),...,u(N−1)

JN = E[Vt0(I1(t0))], (35)

where Vt0(·) is obtained recursively according to (the Bellman equation) (for t = N −
1, . . . , t0)

Vt(I1(t)) = min
u(t)

E[xTQ1x(t) + u(t)
TQ2u(t) + Vt+1(I1(t+ 1)) | I1(t), u(t)] (36)

with the initial condition

VN (I1(N)) = E[x(N)
TQ0x(N) | I1(N)]. (37)

The dimension of the information vector I1(t) depends on t. Now I1(t) = [I1(t −
1)T , y(t)T , u(t)T ]T , where y(t) is given by (see (22))

y(t) = Cx(t) + v(t).

In part I of these lecture notes when deriving the predictive Kalman filter, it was shown
that the conditional distribution of x(t) given I1(t) is the same as the conditional distrib-
ution of x(t) given x̂(t | t− 1), where x̂(t | t− 1) denotes the minimum variance estimate
of x(t) based on the information I1(t) (i.e. the optimal predicted value of x(t) based on
information up to time t− 1). In addition, this conditional distribution is gaussian with
mean value x̂(t | t − 1) and covariance matrix Px(t) (see Part I of these lecture notes).
Hence

E[x(t)TQ1x(t) + u(t)
TQ2u(t) + Vt+1(I1(t+ 1)) | I1(t), u(t)] =

E[x(t)TQ1(t) + u(t)
TQ2u(t) + Vt+1(I1(t+ 1)) | x̂(t | t− 1), u(t)].

Therefore we can define a new function

Wt(x̂(t | t− 1)) = Vt(I1(t)), t = N, . . . , t0.

Inserting this notation into (35),(36) and (37) while using the auxiliary result (29) gives

min
u(t0),...,u(N−1)

JN = E[Wt0(x̂(t0 | t0 − 1))] (38)

where Wt0(·) is obtained recursively from the functional equation (for t = N − 1, . . . , t0)
Wt(x̂(t | t− 1)) = minu(t){x̂(t | t− 1)TQ1x̂(t | t− 1) + trQ1Px(t) +

u(t)TQ2u(t) + E[Wt+1(x̂(t+ 1 | t)) | x̂(t | t− 1), u(t)]} (39)
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with the initial condition

WN(x̂(N | N − 1)) = x̂(N | N − 1)TQ0x̂(N | N − 1) + trQ0Px(N). (40)

Solution of the functional equation (39)

By analogy with (26), the functional equation (39) can be solved by showing that the
solution has the form

Wt(x̂(t | t− 1)) = x̂(t | t− 1)TS(t)x̂(t | t− 1) + s(t) (41)

where S(t) is a (symmetric) positive semidefinite (or positive definite) matrix and s(t) is
a scalar term. (We emphasize that these quantities are not assumed to be the same as in
(28), although the notation is the same!)
By (40) we see that (41) holds for t = N with S(N) = Q0 and s(N) = trQ0Px(N).

We shall show that if (41) holds for t + 1, then it will also hold for t. By induction (41)
then holds for N ,N − 1,. . .,t0. So assume that

Wt+1(x̂(t+ 1 | t)) = x̂(t+ 1 | t)TS(t+ 1)x̂(t+ 1 | t) + s(t+ 1)
In order to solve (39), we need to evaluate E[Wt+1(x̂(t+ 1 | t)) | x̂(t | t− 1), u(t)]. By the
Kalman filter equations, predictive case (see Part I of these lecture notes), it holds that

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)(y(t)− Cx̂(t | t− 1)), (42)

where K(t) is the Kalman filter gain given by

K(t) = APx(t)C
T (CPx(t)C

T +R2)
−1.

Here A, C and R2 are quantities in the state space system (21), (22), (23) and Px(t) is the
covariance matrix of the estimation error x(t)− x̂(t | t− 1). Furthermore, the quantity

ỹ(t) = y(t)− Cx̂(t | t− 1)
({ỹ(t)} is the so-called innovation process) has a conditional distribution given [I1(t), u(t)],
or [x̂(t | t − 1), u(t)], which is gaussian with zero mean value and covariance matrix
CPx(t)C

T +R2.
Hence it follows that x̂(t+ 1 | t) given [x̂(t | t− 1), u(t)] is normally distributed with

mean value

E[x̂(t+ 1 | t) | x̂(t | t− 1), u(t)] = E[x̂(t+ 1 | t) | I1(t), u(t)] = Ax̂(t | t− 1) +Bu(t)
and covariance matrix

E
h
(x̂(t+ 1 | t)− Ax̂(t | t− 1)−Bu(t)) (x̂(t+ 1 | t)− Ax̂(t | t− 1)−Bu(t))T |

x̂(t | t− 1), u(t)] = E
h
K(t)ỹ(t) (K(t)ỹ(t))T | x̂(t | t− 1), u(t)

i
=

K(t)(CPx(t)C
T +R2)K(t)

T .
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Thus by (29)

E[Wt+1(x̂(t+ 1 | t)) | x̂(t | t− 1), u(t)] =
E[x̂(t+ 1 | t)TS(t+ 1)x̂(t+ 1 | t) | x̂(t | t− 1), u(t)] + s(t+ 1) =
(Ax̂(t | t− 1) +Bu(t))T S(t+ 1) (Ax̂(t | t− 1) +Bu(t)) +

tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ] + s(t+ 1).

Inserting this into (39), we get that

Wt(x̂(t | t− 1)) = minu(t){x̂(t | t− 1)TQ1x̂(t | t− 1) + trQ1Px(t) +
u(t)TQ2u(t) + (Ax̂(t | t− 1) +Bu(t))T S(t+ 1) (Ax̂(t | t− 1) +Bu(t)) +

tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ] + s(t+ 1)} =
minu(t){u(t)T (BTS(t+ 1)B +Q2)u(t) + u(t)TBTS(t+ 1)Ax̂(t | t− 1) +

x̂(t | t− 1)TATS(t+ 1)Bu(t)}+
x̂(t | t− 1)T (ATS(t+ 1)A+Q1)x̂(t | t− 1) + trQ1Px(t) +

tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ] + s(t+ 1),

where we have moved all terms that do not depend on u(t) outside the minimization with
respect to u(t) operation. But here we have the same minimization problem as in (30)
except that here x̂(t | t− 1) replaces x(t)! Thus we can write down the solution directly
from the earlier solution of (30). Thus a completion of squares argument gives that

Wt(x̂(t | t− 1)) =
x̂(t | t− 1)T [ATS(t+ 1)A− ATS(t+ 1)B(BTS(t+ 1)B +Q2)−1BTS(t+ 1)A

+Q1]x̂(t | t− 1) + trQ1Px(t) + tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ] + s(t+ 1),

and the minimum is attained for

(BTS(t+ 1)B +Q2)u(t) +B
TS(t+ 1)Ax̂(t | t− 1) = 0

or
u(t) = −(BTS(t+ 1)B +Q2)−1BTS(t+ 1)Ax̂(t | t− 1). (43)

(In (43) x̂(t | t−1) replaces x(t) in (31).) This means thatWt(x̂(t | t−1)) is indeed given
by (41) (and so our induction argument is complete). Furthermore, it is seen from the
previously obtained expression forWt(x̂(t | t−1)) that S(t) is given by the same equation
(34) as in the complete state information case, and

s(t) = s(t+ 1) + tr[Q1Px(t)] + tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ]

We summarize the solution to Problem 1 in the incomplete state information case (that
corresponds to the predictive Kalman filtering situation) as follows.
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Solution to Problem 1 with Incomplete State Information I1(t) – Summary

The admissible control strategies for u(t) are allowed to be functions of the information
state I1(t) = [y(t0)T , u(t0)T , . . . , y(t− 1)T , u(t− 1)T ]T at time t.
The loss function (24) is minimized, among the admissible control strategies, by the
control strategy

u(t) = −L(t)x̂(t | t− 1), (44)

where L(t) is given by (33) and the estimate x̂(t | t−1) is given by (42), see the treatment
of the predictive Kalman filtering case in Part I of these lecture notes for the full details.
If the initial state x(t0) has mean value m and covariance matrix R0, the minimum of the
loss function (24) is given by (putting x̂(t0 | t0 − 1) = m)

minu(t0),...,u(N−1) JN = E[Wt0(x̂(t | t− 1))] =
E[x̂(t0 | t0 − 1)TS(t0)x̂(t0 | t0 − 1) + s(t0)] =

mTS(t0)m+ s(t0) = m
TS(t0)m+

PN−1
t=t0

tr[Q1Px(t)] +PN−1
t=t0

tr[S(t+ 1)K(t)(CPx(t)CT +R2)K(t)T ] + tr[Q0Px(N)], (45)

where we have used the previously obtained recursive expression for s(t) and the initial
value s(N) = tr[Q0Px(N)]. We recall from Part I of these lectures notes that Px(t),
t = t0,. . ., N , is given by

Px(t+ 1) = APx(t)A
T − APx(t)CT (CPx(t)CT +R2)−1CPx(t)AT +R1

with the initial value
Px(t0) = R0.

Remark 3.5 Using the definition of the Kalman filter gain K(t), the previous equation
for Px(t) and (33)-(34), it can be shown that the minimum loss (45) can be written as

minu(t0),...,u(N−1) JN = m
TS(t0)m+ tr[S(t0)R0] +PN−1

t=t0
tr[R1S(t+ 1)] +

PN−1
t=t0

tr[Px(t)L(t)TBTS(t+ 1)A]. (46)

The first three terms give the minimum loss in the case of complete state information, cf.
the summary to the solution of Problem 1 in the complete state information case. The
fourth term is thus the additional loss due to the fact that information about the state is
incomplete, so that only the information I1(t) is available when determining u(t).

Remark 3.6 The previous result gives the optimal control strategy in the case when the
disturbances of the state space system (21)-(22) are gaussian, i.e. normally distributed.
(Recall that LQG means linear quadratic gaussian.) We observe that if it is not assumed
that the disturbances are normally distributed (just that they are white noise with co-
variances (23) and have zero mean), the results, in Part I of these lectures, for predictive
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Kalman filtering still mean that (44) gives the optimal linear control law for the system.
This follows as the predictive Kalman filter is the optimal linear filter for state estimation
(i.e. for minimum variance estimation of x(t) based on the information I1(t)).

Dynamics of the Closed Loop System
The closed loop dynamics depends on both the dynamics of the Kalman filter for the

estimate x̂(t | t−1) and the feedback from x̂(t | t−1). The closed loop system is described
by the equations

x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)

u(t) = −L(t)x̂(t | t− 1)
x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(t)(y(t)− Cx̂(t | t− 1))

Introduce the estimation error

x̃(t) = x(t)− x̂(t | t− 1).

The equations describing the closed loop system can then be written as

x(t+ 1) = Ax(t)−BL(t)x̂(t | t− 1) + w(t)
= (A−BL(t))x(t) +BL(t)x̃(t) + w(t)

x̃(t+ 1) = Ax̃(t) + w(t)−K(t)(y(t)− Cx̂(t | t− 1))
= (A−K(t)C)x̃(t) + w(t)−K(t)v(t)

In the stationary case the closed loop system can be written as, denotingK = limt→∞K(t)
and L = limN−t→∞L(t),µ

x(t+ 1)
x̃(t+ 1)

¶
=

µ
A−BL BL
0 A−KC

¶µ
x(t)
x̃(t)

¶
+

µ
I
I

¶
w(t)−

µ
0
K

¶
v(t)

Note that the equation

det
·µ
A−BL BL
0 A−KC

¶
− λI

¸
= det(A−BL− λI)× det(A−KC − λI) = 0

determines the eigenvalues λ of the closed loop system matrix. Thus the closed loop
eigenvalues consist of the eigenvalues of A−BL and of A−KC, i.e. of the eigenvalues of
the optimally controlled deterministic system and of the eigenvalues of the Kalman filter.
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3.4 The Separation Principle

We shall discuss here briefly the celebrated separation principle of LQG control.

By Remark 3.4, the control law (32)-(33) is optimal for the deterministic linear quadratic
(LQ) control problem. The optimal control strategy with incomplete state information
consists of, according to (44):

1. An optimal state estimator to give the state estimate x̂.

2. A linear feedback from the state estimate x̂ using the optimal feedback gain matrix
for the deterministic LQ control problem.

The linear quadratic gaussian (LQG) control problem thus has the property that esti-
mation and control are separated. This is the celebrated separation principle of LQG
control. This property is a consequence of the fact that the covariance matrix Px(t) of
the estimation error does not depend on the observations, and hence, not on the inputs
to the system.

3.5 Solution of the LQG Problem: Filtering Case

We have so far dealt with the incomplete state information case in the predictive case,
i.e. in the case that the information available to compute u(t) is given by I1(t), which
contains y(t − 1) as the most recent available measurement. Here we shall consider the
filtering case in which also y(t) is available for computing u(t), i.e. when the available
information is given by I0(t).

We can write in vector form

I0(t) = [y(t0)
T , u(t0)

T , . . . , y(t− 1)T , u(t− 1)T , y(t)T ]T .
We should emphasize that u(t) does not belong to the information I0(t).

From the derivation of the solution to the LQG control problem (44), we see that it is
possible to solve in an analogical manner the LQG control problem when an admissible
control strategy is such that u(t) is a function of I0(t). In fact, this observation can be
also applied to the case when the available information for computing u(t) is given by
Ik(t), where

Ik(t) = [y(t0)
T , u(t0)

T , . . . , y(t− k)T , u(t− k)T , u(t− k + 1)T , . . . , u(t− 1)T ]
and k = 1, 2, . . . is a positive integer. (Then the most recent measurement available to
compute u(t) is y(t− k).)
The loss function (24) is then minimized, among the admissible control strategies, by

the control strategy
u(t) = −L(t)x̂(t | t− k)
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where L(t) is given by (33)-(34). Note that here k ≥ 0, i.e. also the case k = 0 is included.
The optimal (minimum variance) predictive estimate of x(t) given the information Ik(t),
for k > 1, is given analogously to the optimal predictive estimate x̂(t | t − 1) derived in
detail in Part I of these lecture notes, see also (42). The optimal filtering estimate x̂(t | t)
(k = 0) was derived in Part I of these lecture notes (the Kalman filter in the filtering
case).

We are mostly interested here in the case k = 0, and then the optimal control strategy is

u(t) = −L(t)x̂(t | t), (47)

where L(t) is given by (33)-(34). As mentioned previously, x̂(t | t) is given by the Kalman
filter equations in the filtering case as derived in Part I of these lecture notes.

Remark 3.7 If y(t) is available for computing u(t), then one should implement the con-
trol law (47), not (44), as (47) gives a smaller value for the control criterion (24). Further-
more, because in (44) u(t) does not use y(t), the control law (44) can give a larger value
for the control criterion (24) than, say, a simple proportional (P-) controller u(t) = Fy(t)
for a well-chosen gain (matrix) F .

Stationary Solutions

Consider the stationary control law

u(t) = −Lx̂(t | t− 1)

where L is given in Remark 3.2 and x̂(t | t − 1) is given by the stationary form of the
predictive Kalman filter, see Part I of these lecture notes. This stationary control law
minimizes, among control laws u(t) which are functions of y(t− 1), y(t− 2), . . ., u(t− 1),
u(t− 2), . . ., the stationary loss function in Remark 3.2, i.e. the loss function

J = lim
N→∞

E

"
1

N

N−1X
t=0

¡
x(t)TQ1x(t) + u(t)

TQ2u(t)
¢#
. (48)

(That is, the average loss per step; it should be emphasized that in Remark 3.2 this
loss function was minimized with respect to a different class of admissible control laws
corresponding to complete state information.)

The minimum value of the stationary loss is by (46)

Jp = min
u(t)=f(y(t−1),y(t−2),...,u(t−1),u(t−2),...)

J = tr[SR1] + tr[Px,pLTBTSA],

where Px,p = Px is the stationary covariance matrix of the estimation error in the predic-
tive Kalman filter case, see Part I of these lecture notes. (Hence Px,p is the symmetric,
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positive semidefinite solution to the algebraic (stationary) Riccati equation for the covari-
ance matrix of the estimation error of the predictive Kalman filter.)

Similarly consider the stationary control law

u(t) = −Lx̂(t | t),
where L is given in Remark 3.2 and x̂(t | t) is given by the stationary form of the filtering
Kalman filter, see Part I of these lecture notes. This control law minimizes, among u(t)
which are functions of y(t), y(t− 1), . . ., u(t− 1), u(t− 2), . . ., the loss function (48).
The minimum value of the stationary loss can be shown to be

Jf = min
u(t)=f(y(t),y(t−1),...,u(t−1),u(t−2),...)

J = tr[SR1] + tr[Px,fLTBTSA],

where Px,f = limt→∞ Px(t | t) is the stationary covariance matrix of the estimation error
x(t)− x̂(t | t) for the stationary form of the filtering Kalman filter.

Remark 3.8 Note that L = (BTSB +Q2)−1BTSA, so that

LTBTSA = ATSB(BTSB +Q2)
−1BTSA

is a symmetric positive semidefinite matrix. It holds that trUV ≥ 0 for any (dimension
compatible) U , V that are square, symmetric, and positive semidefinite matrices. By Part
I of these lecture notes

Px,f = Px,p − Px,pCT (CPx,pCT +R2)−1CPx,p
and so the difference

Px,p − Px,f = Px,pCT (CPx,pCT +R2)−1CPx,p ≥ 0
is a symmetric positive semidefinite matrix. Thus

Jp − Jf = tr[(Px,p − Px,f )LTBTSA] =
= tr[Px,pCT (CPx,pCT +R2)−1CPx,pATSB(BTSB +Q2)−1BTSA] ≥ 0.

That is, the stationary loss Jp is at least as large as Jf (as expected).

Exception to Separation in the Filtering Case

There is a case in which the optimality of the control law u(t) = −L(t)x̂(t | t) does not
hold. This corresponds to the situation when the process noise and the measurement
noise are correlated in the state space model. So we consider now the state space system

x(t+ 1) = Ax(t) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)
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with R12 = E[w(t)v(t)T ] 6= 0, but otherwise the state space system is as before.

We assume that the measurement signal and input signal information available to compute
u(t) is given by I0(t). As R12 6= 0, it follows that there is in addition information available
about the disturbance w(t) to compute u(t) via the measurement y(t) (which is included
in I0(t)). Thus we can find an optimal estimate ŵ(t | t) of the disturbance w(t) which
can now be nonzero. (In the case that R12 = 0 which was treated earlier, the minimum
variance estimate of w(t) given I0(t) is zero as then the conditional mean of w(t) given
I0(t) is equal to the unconditional mean of w(t) and the latter is zero by assumption.)

As w(t) affects x(t + 1), its estimate ŵ(t | t) should also be fed back, and the optimal
control strategy is not of the form u(t) = −L(t)x̂(t | t). That is, here the separation
principle does not hold in its usual form! In the present case the information state I0(t)
contains more information than x̂(t | t) about the future behavior of the state space
system. (And therefore our earlier derivation of the optimal control strategy does not
apply as such in this situation.)

This is exception is of particular interest, since it is common to start with a difference
equation model of the ARX or ARMAX form treated in Part I of these lecture notes.
This is true for example when the model is obtained via system identification. A popular
state space realization of such difference equation models corresponds then to the case
that R12 6= 0, see Part I of these lecture notes for the details.

Example 2 Consider the time series model

y(t)− ay(t− 1) = bu(t− 1) + e(t) + ce(t− 1),

where {e(t)} is (possibly gaussian) white noise.
A natural state space representation of this model is (put x(t) = y(t)− e(t))

x(t+ 1) = ax(t) + bu(t) + (c+ a)e(t)

y(t) = x(t) + e(t)

In this case the optimal control strategy can be found either by deriving the correct
optimal control strategy which also feeds back ŵ(t | t), or by transforming the system
equations by expanding the state vector so as to make the process noise and measurement
noise uncorrelated in the expanded model, and by applying the standard optimal control
law to the expanded system! Let us proceed by the latter route.
Define the expanded state vector

xe(t) =

µ
y(t)

e(t− 1)
¶
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This gives easily that

xe(t+ 1) =

µ
a c
0 0

¶
xe(t) +

µ
b
0

¶
u(t) +

µ
1
1

¶
e(t)

y(t) = ( 1 0 )xe(t)

Note that in this expanded model the measurement noise ve(t) = 0 and so the covariance
matrix E[we(t)ve(t)T ] = 0, where the process noise of the expanded system is given by

we(t) =

µ
1
1

¶
e(t)

Thus we can apply the standard form of the optimal control law to the expanded state
system resulting in a control law of the form

u(t) = −L(t)x̂e(t | t)

(Note that one needs to add a fictitious measurement noise term, to the expanded model,
with a small symmetric positive definite measurement noise matrix R02 to guarantee the
existence of a matrix inverse in the Riccati equation for the covariance matrix of the
appropriate estimation error. One can put R02 = δ × I, where δ > 0 should be a very
small number.)

3.6 Difference Equation Representation of Stationary Optimal
Control Law

Consider the case when t− t0 →∞, N − t→∞, and assume that both the Kalman filter
gain K(t) and the feedback gain matrix L(t) approach their stationary values

K = lim
t−t0→∞

K(t), L = lim
N−t→∞

L(t).

The control law (44) can be written as (with the stationary form of the predictive Kalman
filter formula)

x̂(t+ 1 | t) = Ax̂(t | t− 1) +Bu(t) +K(y(t)− Cx̂(t | t− 1))
= (A−BL−KC)x̂(t | t− 1) +Ky(t)

u(t) = −Lx̂(t | t− 1)

But these equations define a state space representation of a linear system with input y
and output u, and hence these equations can be written via the transfer function (from y
to u) in the difference equation form

u(t) +H1u(t− 1) + . . .+Hju(t− j) = G1y(t− 1) + . . .+Gky(t− k).
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(Here j and k can be chosen to be smaller all equal to n, the dimension of the vector x̂.)
Note that y(t) is not fed back to u(t) (y(t) is not available for u(t)).

Analogously, the control law (47) can be written as (with the stationary form of the
filtering Kalman filter formula)

x̂(t+ 1 | t+ 1) = Ax̂(t | t) +Bu(t) + K̄[y(t+ 1)− C(Ax̂(t | t) +Bu(t))]
= (A−BL− K̄CA+ K̄CBL)x̂(t | t) + K̄y(t+ 1)

u(t) = −Lx̂(t | t)
This can be written in difference equation form as

u(t) + H̄1u(t− 1) + . . .+ H̄ju(t− j) = Ḡ0y(t) + . . .+ Ḡky(t− k).
Note that y(t) IS here fed back to u(t)!

3.7 Stationary Solutions of the Riccati Equation

We noted earlier that the Riccati equations of (predictive) Kalman filtering and linear
quadratic control have essentially the same mathematical structure. Thus we consider
the stationary form of the Riccati equation (34) only.

The stationary form of this Riccati equation is

S = ATSA−ATSB(BTSB +Q2)−1BTSA+Q1
= (A−BL)TS(A−BL) + LTQ2L+Q1,

where L = (BTSB + Q2)
−1BTSA is the feedback gain matrix. The closed loop system

becomes with u(t) = −Lx(t)
x(t+ 1) = Ax(t) +Bu(t) + w(t)

= (A−BL)x(t) + w(t)
We are only interested in such solutions of the stationary (or algebraic) Riccati equation,
which make the closed loop stable, i.e. the matrix A− BL must have all its eigenvalues
strictly inside the unit circle. We must note that this restriction is important. There are
cases in which the algebraic Riccati equation can have a positive semidefinite solution
giving a feedback gain matrix L such that the closed loop system is not stable. (An
example is provided by the minimum variance control law for nonminimum phase systems
that gives the global minimum for the output variance: the input part of the closed loop
system is then unstable resulting in an input that grows with time and hence then the
control law u(t) = −Lx(t) should not be implemented.)
That is, there can be important situations in which the algebraic Riccati equation, a

nonlinear equation in S, has several solutions, even several positive semidefinite solutions.
It is important to check that one uses the correct (stabilizing) solution of the algebraic
Riccati equation. Use professionally made software to solve algebraic Riccati equations!
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4 Concluding Remarks

This course has dealt with minimum variance state estimation, that is Kalman filtering,
and linear quadratic gaussian (LQG) control. Fairly detailed derivations of the Kalman
filter and the LQG control law have been given. We have also given the necessary back-
ground material on minimum variance estimation and dynamic programming (also sto-
chastic dynamic programming). This should make it possible for the student to derive
optimal state estimators and optimal control laws in other related situations not covered
in this course.

Kalman filtering and LQG control are two of the most elegant and versatile methods in
the control and systems area. With the rapid increase in the complexity of estimation
and control applications in networked systems, it is expected that the range of further
developments and applications of Kalman filtering and LQG control continues to grow in
the future.
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